
PCG-Based Game Design Patterns

Michael Cook
University of Falmouth

Mirjam Eladhari
Otter Play Games

Andy Nealen
NYU Game Center

Mike Treanor
American University

Eddy Boxerman
Hemisphere Games

Alex Jaffe
Spry Fox

Paul Sottosanti
Riot Games

Steve Swink
Cube Heart

Abstract

People enjoy encounters with generative software, but rarely
are they encouraged to interact with, understand or engage
with it. In this paper we define the term PCG-based game,
and explain how this concept follows on from the idea of
an AI-based game. We look at existing examples of games
which foreground their AI, put forward a methodology for de-
signing PCG-based games, describe some example case study
designs for PCG-based games, and describe lessons learned
during this process of sketching and developing ideas.

Introduction
Generative software, whether in games or outside, is a
source of delight and entertainment for users. The popularity
of Twitter bots is a good example of how people are deriv-
ing enjoyment from viewing and experiencing the output of
generative systems. This is particularly true of games, where
generators have become increasingly common and people
who regularly play games are more and more comfortable
with the idea of ‘generated content’ and what that might en-
tail. Players of the game Minecraft (Mojang 2009) collect
the random seed integers that describe worlds of particu-
lar beauty and archive them online, while roguelike play-
ers repeatedly generate and discard worlds until they find
one with particular features. We are familiar with genera-
tive systems and we enjoy controlling, interacting with and
exploring them.

Despite this, games traditionally hide generative systems
away from the player. Level generators are typically non-
interactive providers of content, and where they are control-
lable it is generally through a menu prior to gameplay – there
is a clear delineation in the game’s design between setting
up the generator before playing the game proper. Generative
systems are designed to passively fill out a game world with
content, rather than being a focus of the player’s time and at-
tention, or even the purpose of playing the game in the first
place.

The term AI-based game (Eladhari et al. 2011; Treanor et
al. 2015) was coined to describe games which foreground
an AI system of some kind. By this we mean that the game
makes an AI system especially visible to the player, and the

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

primary focus of the game is to interact with or be affected
by the AI system in some way. Some examples of AI-based
games include Alien: Isolation (Creative Assembly 2014) in
which the player’s relationship with a single AI enemy is the
focus of gameplay, or Third Eye Crime (Moonshot Games
2014) where pathfinding algorithms are visually represented
to the player as the key skill that allows them to solve the
game’s puzzles.

In this paper we refine the notion of AI-based games into
a special case of games driven by procedural generators. We
call these PCG-based games, and describe concretely how
they embody the original premise of AI-based games. We
describe why these are uniquely important among AI-based
games, and why the opportunity for literacy and interaction
with procedural generators make them valuable cultural ar-
tifacts and learning tools, as well as fertile ground for new
game ideas. Finally, we describe some example game pro-
posals we developed, and show how they highlight common
issues or concepts with using procedural generation as the
central focus of a game.

Related Work
Smith et al. describe Endless Web (Smith et al. 2012), as
a platforming game with procedurally generated levels. By
exploring the levels and choosing particular exits, the player
can alter the parameters to the procedural generator, allow-
ing them to explore the generative space through gameplay.
This is the earliest example we are aware of in which a game
is designed around a procedural generator with the explicit
intention of giving a player control of the generator’s out-
put. This is perhaps the best-known and most explicit use of
procedural generation as a game mechanic.

Many games expose a procedural generator of some kind
to the player, usually in a preparatory phase before game-
play begins. Civilisation V (Firaxis Games 2010) is one such
game, allowing the player to customise features of the world
generation algorithm such as erosion strength, global tem-
perature averages, sea levels, and resource distribution. This
allows the player to roughly shape what content is generated,
sometimes as a way of specialising the difficulty curve, and
at other times as a form of abstract self-expression (deciding
to play in a particular world, or on a planet with a custom
backstory).

The framing of player control over generators inside

ar
X

iv
:1

61
0.

03
13

8v
1

 [
cs

.A
I]

 1
1

O
ct

 2
01

6

Figure 1: A screenshot showing part of Endless Web’s in-
game ‘map’. Each line extending outwards from the center
of the web represents a vector along which the level genera-
tor can be modified.

games is almost always explicit and literal - Minecraft refers
to the act of ‘generat[ing] a new world’ when its genera-
tive algorithm is invoked, while Invisible Inc. offers players
a ‘custom campaign settings’ window where options can be
altered before starting a campaign. This is important, as it
distinguishes the work from our aims here by separating the
interactions with a generator from the act of playing a game.
In physical games, generator configuration is typically done
prior to gameplay too – deck construction in games such
as Netrunner (Fantasy Flight Games 2012) or Magic: The
Gathering (Wizards Of The Coast 1993) are ways of con-
figuring the space of shuffled decks from which the player
will later draw from, and games like Carcassonne or Dun-
geon Run allow the players to add or remove types of card
from a deck to change the resulting play spaces created by
the game. As with digital games, these are all setup activi-
ties (although deck-building and drafting is arguably a fun-
damental part of gameplay (Trammell 2010)).

Many researchers have looked at the issues that arise
when people interact with procedural generators. In (Khaled,
Nelson, and Barr 2013) Khaled explores the metaphors de-
signers use when talking about procedural generation. Even
among only professional designers this is quite diverse, and
includes metaphors such as tool, material and designer.
Given the breadth of uses for generative techniques, and the
varying levels of complexity to which they are employed, we
imagine there are many more concepts about generative sys-
tems held by people who play and interact with them. Part of
this work’s aims is to develop games that bring these issues
to the fore, and allow us to study user understanding.

Elsewhere, work in (Shaker, Yannakakis, and Togelius
2010) or in (Mumford and Ventura 2015) show the relation-
ship between users and generative systems, especially in the
context of games or game-like applications. (Mumford and
Ventura 2015) sheds light on, for example, how the presen-

tation of generated content affects our perception of the sys-
tem which generated it. Games like Dwarf Fortress allow us
to watch the slow creation process of a world, which may
makes us feel differently about the quality and intelligence
of the system than if it had appeared out of nowhere.

A Design Taxonomy For PCG
In this section we deconstruct the notion of generative tech-
niques for games into a taxonomy that is based on the quali-
ties we might be interested in as prospective game designers.
The best-known taxonomy for procedural generation is per-
haps (Togelius et al. 2011), which categorises approaches
based on dimensions relating to when they are used, what
kind of content they create, and also how controllable they
are. Here we focus instead on the affordances and nature of
the generator from the perspective of a game designer.

An Interaction Taxonomy
Different generators have different means by which they can
be edited and meaningfully changed. This taxonomy out-
lines a non-exhaustive list of ways in which common types
of generator can be altered either prior to, during, or after
execution.

Starting State Some generators, such as cellular automata
systems or L-Systems, iterate upon a starting state of some
kind in order to generate their content, typically expressed
in the same format as its final output. For these systems, the
output content can be dramatically changed and controlled
simply by changing this starting state, even if all parameters
and random seeds are left unchanged.

Parameters Many generators have controllable parame-
ters in the form of boolean fields, numerical ranges, or a
random seed. Changing these parameters can have a range
of effects on the output. The number of generations in an
evolutionary system, or the size of the array in the Diamond-
Square algorithm, are simple examples of generator param-
eters.

Rules While most generators embody some notion of a
procedure for generating content, certain algorithms repre-
sent an abstract set of rules that define a crucial part of
their generative process. L-Systems and context-free design
grammars are two examples of systems which have internal
representations of rules which guide their generation.

Objective Functions Generate-and-test approaches eval-
uate generated content and either discard or repurpose con-
tent which does not meet the standards it has. This process is
normally separate to the act of generation (although in some
cases it is woven in, as with an evolutionary system’s fit-
ness function) but altering it affects the kind of content the
generator produces.

A Content Taxonomy
Generators are used for an increasingly wide range of pur-
poses within games, expanding beyond classical uses of en-
vironment creation and item randomisation. Here we (non-
exhaustively) taxonomise procedural generators according

to the role that the generated content plays within a game de-
sign. The intent here is to help classify approximately what
aspect of the game’s systems the player will be interacting
with and changing.

Progression Systems Generators which produce content
tied into an escalation of difficulty and reward are influenc-
ing a game’s progression systems. A generator which creates
items found on an adventure is tied into the player’s gradual
increase in strength - stronger and more plentiful items result
in a more powerful player or one with more resources. Other
examples include games which generate enemies according
to approximate difficulty curves.

Environment & Space Generators which produce levels,
worlds or other explorable spaces. This might be specific-
case generators such as a roguelike’s dungeon generation al-
gorithm where the player path is often tightly incorporated
into the design, or it might be a more open environment gen-
erator such as Minecraft’s world generator. This content of-
ten sets specific challenges for the player, either in traver-
sal (mastering abilities like jumping or navigation) or explo-
ration (finding a particular item, place or resource in a large
area).

Narrative Generators which either produce sequences of
events framed as a story, or those which simulate a world
in which stories take place and structure a narrative around
them. We distinguish these from naive, purely agent-based
world simulations from which a narrative emerges as a side-
effect, such as Dwarf Fortress. Generators in this category
have some degree of intentionality in causing a story to
occur. Examples include Versu’s agent-based storytelling
(Evans and Short 2014), or the AI Storyteller system in Rim-
World. Generated narratives may serve as motivation for
player or non-player characters to act, may reveal exposition
to lead to further game events, or may be an end in itself for
the player, whereby the narrative’s resolution is the ultimate
aim of the game (such as in a choose-your-own-adventure).

Aesthetic & Decorative Elements Generators which pro-
duce thematic elements, decorations, visual and aural con-
tent that augment and style a game in a particular way.
This content may not specifically impact a challenge for the
player (if, indeed, the game is designed around the notion of
challenges or tests) but may contribute to the game’s general
atmosphere and mood.

PCG-Based Game Design Patterns
In (Treanor et al. 2015) the authors describe a collection of
design patterns for taking AI techniques and using them as
the basis for a game. In this section we extend these design
patterns with additional, specialised patterns that target con-
cepts in procedural content generation specifically. In some
cases these are variations or blends of design patterns from
the original paper.

AI As Creative Proxy
Pattern: The player designs or tweaks a generative system
which then goes on to produce content, either for mechani-
cal or aesthetic purposes.

Explanation: Instead of directly designing a piece of con-
tent co-operatively with an AI system (as in the AI as Co-
Creator AI-based game pattern), in this pattern the player
designs a system that will act as a creator of other content,
and that system then goes on to have a role within the game.
This might be a purely aesthetic, playful or non-critical role,
or it may have a mechanical purpose. A key aim of this pat-
tern is to get the player to engage in the meta-level creation
process, designing a generator while thinking about the kind
of generative space they are defining in doing so.
Example: (Saunders 2002) describes a system of AI agents
acting as creative communities with some agents acting as
critics, some as creators, and some as gatekeepers that filter
art between communities and set trends. A game in which
the player designs an artist which then enters such a creative
community would task the player with thinking abstractly
about a space of art, rather than a single piece on its own.

AI As Meta-Environment
Pattern: The possibility space of a generative system acts
as a space the player can travel through using transformative
operations.
Explanation: Akin to travelling through physical game
space to solve problems, explore areas or reach objectives,
in this pattern the player travels through the abstract genera-
tive space of a procedural generator, by making adjustments
to the generator such as altering parameters or input data.
The player’s aim might be to produce a particular example
of content, have the generator occupy a particular region of
space, or achieve some other in-game goal that is affected by
the state of the generator. The adjustments to the generator
can be thought of as edges connecting vertices in a graph,
which represent distinct states of the generator.
Example: In Endless Web the player travels through physi-
cal game space when solving levels. The exit they choose to
each level effectively allows them to travel in the possibility
space of the level generator, by altering generator parameters
that affect what kind of levels are generated subsequently.
Figure 1 shows the ‘world map’ showing what state the gen-
erator is currently in and where the player can move to in the
graph of generator states.

AI Is Filtered
Pattern: The player acts as a fitness function or filter for
generated content.
Explanation: In this pattern, a generator produces content
which has some role in the game’s systems. The player can
control the generator through selecting, ranking or filtering
its content in some way. This might be similar to an inter-
active evolutionary system where the player selects content
which feeds back into the system, or it might be a culling
process where the player takes the role of the ‘tester’ in a
‘generate and test’ process.
Example: Interactive evolutionary games like Petalz gener-
ate flower designs which the player filters by selecting flow-
ers to breed together. Another unintentional example of this
pattern is ‘scumming’, a technique developed by roguelike
players where certain randomised events can be re-triggered
until a favourable outcome is found. Although this is not part

Figure 2: An example decision point in Sliding Doors. The
left and right subtrees represent (partially represented) sub-
stories resulting in taking either the first or second decision
respectively. The coloured node in each subtree represent a
point in the future which the player has chosen to reveal.

of the design, its emergence as a play technique is an inter-
esting example of this behaviour.

AI Is Interrupted
Pattern: The player interjects in the execution of generative
systems, stopping, slowing or restarting their progress.
Explanation: This pattern takes generative systems, possi-
bly expressed as multi-agent systems, and allows the player
to interrupt them partway through their execution in order
to achieve a particular effect. This might be in order to take
advantage of partially-generated content when it reaches a
stage that the player deems useful, or it might be to recon-
figure the environment so the process can be restarted and
continues in a different way.
Example: Although no games specifically exemplify this
pattern, games such as Lemmings or Dungeon Keeper es-
sentially express simply generative systems through au-
tonomous agents that perform actions to modify the game
world. The player can alter these agents to change the gen-
erative processes in order to solve puzzles.

Case Study: Sliding Doors
Sliding Doors is a choose-your-own-adventure game in
which the player controls a character through a story, mak-
ing decisions at various points to decide what the player does
next, thereby influencing the chain of events that transpires.
Typically, games of this type use human-authored stories
where the narrative branches off depending on choices but
often meet up again in the future to simplify the num-
ber of possible stories. Examples of games of this type in-
clude Telltale’s The Walking Dead. Some games use story-
generation systems to produce more variety in their story-
lines - Versu models story characters as agents and allows
relationships between them to combine with a loose narra-
tive structure to generate stories.

Our concept for Sliding Doors utilises a story generator
to create a narrative of events during which the player is

regularly posed with scenarios and asked to make choices.
In a normal game this decision would be made only using
the current context, however in Sliding Doors the player
can choose to view some future state in the timelines rep-
resented by each individual choice (a binary choice presents
the player with two possible future visions, for example, one
for each choice). The player can choose how far into the
future each vision comes from, however the nearer to the
present time they choose to look at, the more vague the vi-
sion they receive.

As an example, consider the following scenario based on
the movie Sliding Doors, which this game is named after.
The main character reaches a train station to discover she is
about to miss her train. The player is offered a choice: try
and run for the train, or miss it and be late for work. In our
story generator, this is a branching point in a larger tree rep-
resenting the entire space of the current story. Each choice
represents a subtree from the story node the player is cur-
rently in, as shown in Figure 2, where the left and right sub-
trees represent the game progressing after the player chooses
either the first or second choice.

In Figure 2 the player has chosen one point in each sub-
tree to reveal information about. In the first subtree the point
is quite far into the future - this will increase the detail in
the vision. The player might have specific information re-
vealed to them, such as a view of them in a particular loca-
tion, a time or date, even some lines of dialogue. The value
of the additional detail is offset by the fact that, at a depth of
four nodes into the future, it is one of eight possible futures
that the story could reach (assuming binary choices - if the
choices are more complex, the number of possible futures
is even higher). This means that statistically it is less likely
that this will actually happen, which changes the value of the
revealed information. By contrast, in the second subtree the
player chooses a more near-future node to reveal. Because
this node is more reliable (being only two nodes deep in the
tree) the information revealed is far more vague. Perhaps the
player sees their character in tears, but is unable to tell where
they are or why they are crying.

In the language of our earlier taxonomies, this design
sketch describes a game which allows the player to view
(and prune, through their choices) the generator’s State
Space in order to make decisions affecting the game’s Nar-
rative. The structure of the generator’s state space is par-
tially represented in-game by allowing the player to select
the depth into the future they wish to examine, although the
specifics of branching story nodes remain hidden.

One of the appeals of story-driven games such as this is
that the player does not know the future when making de-
cisions, and thus uncovers a narrative as they make choices
throughout the game (and may never know the consequences
of choices they didn’t make). Because we are explicitly
breaking this convention by allowing the player to view
the future states of the story, some kind of uncertainty and
limitation is introduced to make the player’s decisions less
straightforward. Viewing points further in the future natu-
rally is less reliable because of the branching factor of the
story, but points in the near future are still reliable, so the
introduction of more vague results from story nodes closer

to the present time is intended to provide a counterweight to
the strength of knowing something about a story event that
is happening soon.

We plan to implement a prototype version of Sliding
Doors in the near future, possibly as an elaboration of an
existing story generation system. It is worth noting that Un-
til Dawn, a AAA PlayStation 4 game, employs a hint system
in its static, human-authored narrative that has a similar way
of referencing the future. Players can find objects in certain
story branches that indicate the branch they are on contains
certain possible futures (such as the death of a character).
By building this idea into a generative system, and adding
a notion of player choice and information tradeoffs, Sliding
Doors shows how such an idea can be built into the very
core of a game design, foregrounding a PCG-based game
mechanic.

Case Study: Tombs Of Tomeria
Tombs of Tomeria (Cook and Colton 2016) is a proto-
type adventure game in which the player can reshape lev-
els in order to access new areas, discover secrets, and make
progress. The player achieves this by reaching levers scat-
tered throughout levels and switching them back and forth.
Each lever is a binary state – switched either left or right –
and flipping the lever causes some blocks in the level to dis-
appear or new ones to reappear. In the current version of the
game the player must seek an exit to each level by flipping
levers back and forth, while collecting as many artefacts as
possible along the way.

Tombs’ levels are generated using a cellular automata.
Each level begins with a random seed and a randomly ini-
tialised grid of blocks, and is then processed according to
rules similar to Conway’s Game Of Life. Parameters govern
crucial features of the level generation process – in particu-
lar, the initial random distribution of blocks (Initial Random
Chance, or IRC), and the number of times the level is iter-
ated upon (Number Of Iterations, or NOI – more iterations
produces a smoother and sparser level).

Whenever the player flips a lever in Tombs, one of the
two previously-mentioned parameters is adjusted by some
delta set by the designer (in this case, the random change
is modified by 0.5% or the number of iterations is changed
by 1). The level is then regenerated using the same initial
random seed, meaning that the state of the level before and
after the lever switch is close enough that one appears to be
a slight variation of the other. This gives the impression of
the level environment slowly ‘shifting’ as levers are pulled.
Figure 3 shows a simple level being solved in three stages.

Because the size of the change caused by a single lever is
known in advance, and the minimum and maximum changes
can be calculated based on how many levers in total are in
the level, Tombs can design levels and check their solvability
in advance. It does this by generating a level for every possi-
ble set of lever states (assuming a constant random seed, and
a known initial set of parameter values). Then, given an ini-
tial location for the player, Tombs can simulate gameplay by
finding all accessible levers and recursively flipping levers
and exploring the resulting levels to create a graph of mutu-
ally accessible game states. This lets Tombs calculate how

much of the level space can be explored by the player, and
where treasure and level exits can be placed to be challeng-
ing but solvable.

In the language of our earlier taxonomies, Tombs allows
the player access to the generator’s Parameters in order to
affect the generation of the Environment. It does this explic-
itly, to some degree - the player is aware they are interacting
with a system by switching levers, but may not understand
exactly what the impact of their actions are (beyond a vague
sense that the level is getting more dense or more sparse
when a lever is thrown).

The use of levers in the design is intended to simplify
and clarify interactions with the generator for the player. Be-
cause only one lever can be thrown with a single action, the
possible changes made by the player are restricted to a sin-
gle parameter at at time. This has several useful effects on
the game design: firstly, the scope of a single player action
is minimised which makes it easier for the player to relate
pulling a lever with its effect on the level; secondly, it simpli-
fies the space of possible player actions which simplifies the
automated level analysis process described above; finally, it
helps limit the total power the player has over the parameter
space, because the number of levers defines the maximum a
parameter can vary from the starting value.

Discussion
Throughout the case studies presented in this paper, as well
as our surveys of existing work and games in this area, sev-
eral commonly recurring themes emerged that we believe
are important to future research in this area as well as for the
future development of PCG-based games. We outline them
below.

Visualisation
Accurately imagining the space of a generator’s output, or
predicting the effect of changing something about a gen-
erator, is exceptionally hard even for an expert practitioner
of generative systems. Thus, games which ask the player to
make strategic, deductive or creative decisions on the basis
of an interaction with a generator need to be able to easily
visualise the results of such interactions. Sometimes this vi-
sualisation is relatively straightforward – in the case of Slid-
ing Doors, for example, the player is shown a partial scene
from a future branch of the story space when they select it.
In other games this may be less simple to do. In an early
prototype of Tombs the player was not able to know the ef-
fect a lever had without pulling it, which made it hard for the
player to make decisions about level traversal.

In the case of viewing the effects of a single change, over-
laying or previewing the effects of a change may be enough
to let the player decide what to do next (in Tombs, blocks
which will change when a lever is pulled might discolour
when the player walks over it, providing a diegetic way of
seeing two outputs from the generator simultaneously. PCG-
based games that require the player to make judgements
about entire spaces of content, or multiple generators, may
benefit from ideas from analytical PCG research, such as
Expressive Range Analysis (Smith and Whitehead 2010).

Figure 3: Three stages of a level in Tombs Of Tomeria being solved, zoomed out to show the level. The circle marks the player
position, and the square marks the goal. At each stage the player has adjusted a generator parameter, opening up more space in
the generated level.

Managing Control
As we noted in our taxonomy section, procedural generators
are typically tasked with important roles in a game’s sys-
tems, such as controlling player progression or defining the
environment the player moves through and explores. Proce-
dural generators are frequently tasked with designing part of
the game experience, and therefore giving the player control
over a generator potentially empowers them to change the
game outside of the designer’s expectations or desires.

This effect may be desirable in some cases, but for the
most part we anticipate that an important part of design-
ing PCG-based games will be knowing how and when to
limit player control over a system. In Sliding Doors, inter-
action with the story generator is a limited resource (the
player can investigate one node per branch per decision), and
the knowledge gained from such interactions is imperfect.
In Tombs, the player can only interact with the generator
at specified places in the game environment, and the same
small degree of change is made in every interaction. While
some of these approaches may be overly conservative, they
show how a balance can be struck between the wild freedom
of a generator and the intended direction of a game’s design.

Encountering Generative Concepts
PCG-based games represent an exciting area in which to
do game design, to develop new technology, and to explore
new ideas about interactivity with generators. However, we
also believe they represent an opportunity for people to gain
more familiarity with generative software in a playful con-
text, without needing to learn how to code. Generators ben-
efit from being taught in an interactive context, and building
this context into a game is an interesting way of teaching and
explaining some of these ideas.

Procedural generation is often seen as little more than a
cheap source of randomness to pad a game out with addi-
tional content, rather than an artistic tool capable of help-
ing a designer achieve specific goals in a work. Stereotypes
about procedural generation are constantly self-reinforcing,

with programming skills often being an additional barrier to
entry (although not universally1). The discipline would ben-
efit from more ways to motivate, interest and excite people
about generative systems, so that the area can grow and de-
velop into an accessible and diverse medium. We hope that
PCG-based games can contribute to this in a small way.

Conclusions

In this paper we refined the notion of a PCG-based game,
a direct extension of AI-based games where a procedural
generator is a central part of the player’s experience and in-
teractions with the game. We discussed the history of the
concept, including AI-based games and prototypical work in
the area, and general theory relating to procedural generators
and people’s interaction with them. We then discussed ways
of taxonomising procedural generators in terms of their af-
fordances for game designers, and linked this to a series
of design patterns inspired by AI-based design patterns. Fi-
nally, we gave details of several case studies, including im-
plemented prototypes, of PCG-based games that illustrate
interesting features of the concept.

There are many examples of games that skirt this exciting
area of game design, and we hope to see more prototypes
and projects working in this domain in the future. By find-
ing new uses and purposes for generative systems in games,
we can move away from stereotypical applications and find
exciting and diverse new uses instead. Additionally, we hope
to see more refinement of subcategories of AI-based games
– the case studies in this paper all owe a debt to the design
patterns and ideation described in (Treanor et al. 2015), and
we hope this paper demonstrates the usefulness and poten-
tial of the approach described. We believe it can be applied
with similarly positive results on other AI techniques.

1http://www.tracery.io

References
[Cook and Colton 2016] Cook, M., and Colton, S. 2016.
Towards procedural generation as gameplay: CLAY and
Tombs of Tomeria. In Under Review.

[Creative Assembly 2014] Creative Assembly. 2014. Alien:
Isolation. http://www.alienisolation.com/.

[Eladhari et al. 2011] Eladhari, M. P.; Sullivan, A.; Smith,
G.; and McCoy, J. 2011. AI-Based Game Design: Enabling
new playable experiences. In UCSC Technical Reports.

[Evans and Short 2014] Evans, R., and Short, E. 2014.
Versu?a simulationist storytelling system. Computational
Intelligence and AI in Games, IEEE Transactions on
6(2):113–130.

[Fantasy Flight Games 2012] Fantasy Flight Games. 2012.
Android: Netrunner. http://tinyurl.com/netrunnersite.

[Firaxis Games 2010] Firaxis Games. 2010. Civilization V.
http://www.civilization5.com/.

[Khaled, Nelson, and Barr 2013] Khaled, R.; Nelson, M. J.;
and Barr, P. 2013. Design metaphors for procedural con-
tent generation in games. In Proceedings of the 2013 ACM
SIGCHI Conference on Human Factors in Computing Sys-
tems, 1509–1518.

[Mojang 2009] Mojang. 2009. Minecraft.
https://minecraft.net/en/.

[Moonshot Games 2014] Moonshot Games. 2014. Third eye
crime. http://store.steampowered.com/app/301420/.

[Mumford and Ventura 2015] Mumford, M., and Ventura, D.
2015. The man behind the curtain: Overcoming skepticism
about creative computers. In Proceedings of the Sixth Inter-
national Conference on Computational Creativity.

[Saunders 2002] Saunders, R. 2002. Curious design agents
and artificial creativity. phd, University of Sydney.

[Shaker, Yannakakis, and Togelius 2010] Shaker, N.; Yan-
nakakis, G. N.; and Togelius, J. 2010. Towards automatic
personalized content generation for platform games. In Pro-
ceedings of the International Conference on Artificial Intel-
ligence in Interactive Digital Entertainment.

[Smith and Whitehead 2010] Smith, G., and Whitehead, J.
2010. Analyzing the expressive range of a level generator. In
Proceedings of the Workshop on Procedural Content Gener-
ation in Games.

[Smith et al. 2012] Smith, G.; Othenin-Girard, A.; White-
head, J.; and Wardrip-Fruin, N. 2012. Pcg-based game de-
sign: Creating endless web. In Proceedings of the Interna-
tional Conference on the Foundations of Digital Games.

[Togelius et al. 2011] Togelius, J.; Yannakakis, G.; Stanley,
K.; and Browne, C. 2011. Search-based procedural content
generation: A taxonomy and survey. IEEE Transactions on
Computational Intelligence and AI in Games 3(3):172–186.

[Trammell 2010] Trammell, A. 2010. Magic: The gathering
in material and virtual space: An ethnographic approach to-
ward understanding players who dislike online play. Mean-
ingful Play.

[Treanor et al. 2015] Treanor, M.; Zook, A.; Eladhari, M. P.;
Togelius, J.; Smith, G.; Cook, M.; Thompson, T.; Magerko,

B.; Levine, J.; and Smith, A. 2015. AI-Based game de-
sign patterns. In Proceedings of the Foundations of Digital
Games Conference.

[Wizards Of The Coast 1993] Wizards Of The Coast. 1993.
Magic: The Gathering. http://magic.wizards.com/.

	Introduction
	Related Work
	A Design Taxonomy For PCG
	An Interaction Taxonomy
	A Content Taxonomy

	PCG-Based Game Design Patterns
	AI As Creative Proxy
	AI As Meta-Environment
	AI Is Filtered
	AI Is Interrupted

	Case Study: Sliding Doors
	Case Study: Tombs Of Tomeria
	Discussion
	Visualisation
	Managing Control
	Encountering Generative Concepts

	Conclusions

