
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1



Abstract—Narrative in video games has often played a

subservient role, due to the complexity of hand-authoring truly

meaningful player choices that can affect an ongoing story. This

article presents Comme il Faut (CiF), an artificial intelligence

sys0074em that matches character performances to appropriate

social context, with the goal of enabling authors to write high-

level rules governing expected character behavior in given social

situations, rather than specific fixed choice points in a curated

narrative structure. CiF characters are associated with three

primary sets of characteristics: traits, relationships and statuses,

which encode both the permanent and temporal qualities

defining a character at a given moment. A complete social history

is also stored and considered by characters in the rules governing

their behavior. We use the example of Prom Week, a complete

game utilizing CiF as its narrative engine, to illustrate how it

successfully creates complex narratives that are unique for each

player and directed by those players’ attempts to make progress

towards story goals..

Index Terms—artificial intelligence, interactive drama,

emergent narrative, game design,

I. INTRODUCTION

 arrative in video games and other forms of interactive

entertainment has often played a subservient role in

gameplay and system design. When it does exist in a

substantial form, narrative is used as either a tool to justify the

setting of a game or doled out in static portions as rewards for

completing other aspects of gameplay. BioShock’s undersea

dystopia allows for distinctive art direction and packages of

narrative to reward progress, but the setting and plot are

largely irrelevant to the player’s interaction style or strategy.

Current games with strong storytelling components do not

offer many options for the player to influence the story. The

“beads on a string” model of interactive narrative [1], for

instance, links sequences of narratively-motivated gameplay

into a linear order, collapsing and eliminating most

consequences of player choice each time the next “bead” is

reached. Allowing for branching structures at discrete player

choice points creates an exponentially increasing authorial

burden, meaning designers tend to avoid structures that allow

for real choice, to the detriment of meaningful player agency

within an interactive narrative. Both problems, of coupling

narrative more tightly to gameplay and reducing the authorial

burden from choice points, can be addressed by implementing

computational models. Models of storytelling domains allows

complexity to be handled procedurally, opening up a new

Manuscript received October 5, 2012. Funding for this work was in part

provided by the National Science Foundation award IIS-0747522.

space for expression not possible with hand-authored

interactive narratives.

Comme il Faut (CiF) [2] is an AI system that uses these

techniques to enable an interactive, authorable model of social

interaction for autonomous agents. Social exchanges are the

primary structure of rep-resenting social interactions in CiF.

Social exchanges are defined as multi-character social

interactions whose function is to modify the social state

existing within and across the participants.

Through the use of social exchanges along with additional

encoded social context, CiF lowers the authoring burden

needed to create the social aspects of an interactive story by

allowing the author to specify the rules and general patterns of

how social interaction should take place. With the separation

of patterns of social behavior from the norms that govern their

use, authors can explicitly encode the reasoning of domains of

social norms which can be reused across all social behaviors.

The encoding of social norms is comprised of individual rules

each of which encompass a social consideration. Because of

this rules-based encoding, additional domain knowledge can

be easily added to the existing base of rules and be

immediately used by CiF. When the rules are used in

conjunction with social exchanges, the character behaviors

generated by CiF are rich and surprising.

In this paper, we contribute a detailed description of the

structures with which CiF represents social knowledge and

how this knowledge is employed to simulate social

interactions between characters in a story world. Situations

from a video game, Prom Week, provides concrete examples

of how CiF can be used to enable social behavior in characters

for interactive storytelling in a way that is tractable to author

and flexible for the player. We also present an evaluation of

the narratives assembled jointly by players and CiF for Prom

Week. This evaluation examines both how unique players’

paths through Prom Week’s are and how well players achieved

their story goals.

II. RELATED WORK

CiF relates to other interactive narrative technologies,

deeper models of characters use in virtual worlds, CiF’s

relation to game AI techniques, and how CiF in Prom Week

compares to existing video games.

Narrative generation systems [3–6] model enough of a story

world to create stories. In comparison, CiF does not attempt to

model an entire story world. Instead it deeply models the

myriad of considerations necessary for a character to follow

norms during social interactions. As such, CiF is meant to be

the social reasoning component encompassed by a narrative

generation system. Similar goals have been attempted through

analysis of crowd-sourced data to discover common play

Social Story Worlds with Comme il Faut

Joshua McCoy, Mike Treanor, Ben Samuel, Aaron Reed, Michael Mateas, and Noah Wardrip Fruin,

UC Santa Cruz

N

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

interaction patterns [7] but our approach is fundamentally

different, driven by a rules-driven AI system rather than

pattern matching from a player-generated corpus.

There are many systems in the domain of modeling

interactions between characters or virtual humans based on

cognitive or psychological models that reason over competing

capacities of a prescribed set of desires [8–10]. CiF is an

implementation of an alternate, norms-based vision of

modeling what characters should be doing. This approach

gives characters the affordance to reason over what desires are

appropriate for the situation and then to negotiate between

those relevant desires [11]. Through modeling normal patterns

of social behavior with a context of general social norms, the

amount of story space covered by each authoring effort is

increased over that of authoring for a single social state.

In comparison to hierarchical task networks [12] and

behavior trees [13], the operators, or patterns of social

behavior, in CiF make use of larger sets of domain knowledge

to judge their appropriateness for the current context. Instead

of encapsulating domain knowledge implicitly in

hierarchically layered operators or behaviors using a small

number of (possibly procedural) pre or post conditions, CiF

chooses characters’ behaviors based on all applicable rules in

a large rulebase that encodes normal social behavior authored

for a particular story world.

The Sims 3 is an example of a culturally influential and

commercially successful video game that has a highly

dynamic social space [14]. Its characters, known as Sims, have

traits and desires that inform the social practices (social norms

and cluster of expectations) they perform [15]. Two major

differences between the systems are in the complexity of the

statements of social norms and the use of history in those

statements. CiF provides a level of complexity similar to first

order logic in that parties outside of the social exchange can be

referenced (x is cheating on y if x and y are dating and there is

a character z also dating x) where The Sims 3 can only

reference the two characters in an interaction. CiF also allows

for both back story (history of the story world before the

player is involved) and play history to be used in reasoning

and social exchange performance, a feature completely

missing from The Sims 3. These richer rules found in CiF

allow for each individual authoring effort to be more potent

while enabling an entire new set of social reasoning to the

characters.

III. COMME IL FAUT

A. Characters

Due to the emphasis in CiF on social norms and how they

guide social exchanges, the representation of each character is

thin. What makes characters rich and unique is their relational

situation in the social world and their interconnected history.

This is a direct artifact of the sociological base of CiF; the

characters are modeled as semiotic selves. The system

determines the most salient social influences for a character by

considering a full context of social norms, history and current

circumstance. To start with, however, characters are

associated with three primary sets of characteristics: traits,

relationships and statuses.

Traits

Traits are permanent properties of a character which heavily

impact the possible social exchanges he or she can play (e.g.

trait(brainy,x)). Though in reality personality traits

can change over a long enough time scale, since CiF is

generally used in short-form narratives, character traits are not

able to be changed.

Relationships

Relationships are binary states that provide detailed

information about the significant social connections between

agents. CiF’s relationships are bidirectional and have

significant impact on social exchange play. For example,

Prom Week has three different types of relationships,

including relationship(friends,x,y),

relationship(dating,x,y), and

relationship(enemies,x,y). Relationships are

stored in a network that contains all of the relationships

between two characters as an edge, as CiF’s notion of

relationships is public, binary, and considered bi-directional.

Statuses

Statuses are temporary, optionally directional, binary social

effects that result from social exchange play. Statuses capture

transitory states in an agent’s mood (e.g.

status(cheerful,x)), sharp spikes of emotion between

agents (e.g. status(hasACrushOn,x,y)) and other

salient but ephemeral facts (e.g. status(popular,x)).

They are useful in capturing transitory but potent social

situations and character states; being angry, embarrassed, or

cheerful can all have major effects on a character’s

performance, while not being permanent.

 As statuses aretemporary, the status data structure includes

a duration element. Unlike relationships (which are shared

equally between two characters), statuses are associated with a

single character. This is why the predicate notation of statuses

always includes at least one character variable, like x. A

character’s status can optionally be associated with a second

character. For example, a character x can pity or be angry at a

second character, y: status(pity,x,y) or

status(angryAt,x,y).

B. Social State

Social Networks

Social networks are bi-directional fully connected networks

where the edge values measure the feelings between

characters. Examples include a romance network, which

measures how interested characters are in pursuing intimate

relationships with each other, and a "coolness" network which

is an approximate record of how much respect characters have

for one another. If x has a romance network value of 80

towards y, but y only has 20 towards x, the agents see their

situation differently.

Networks being bi-directional and distinct from

relationships permits interesting (and lamentably true to life)

states like:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

relationship(dating, x, y),

network(romance,x,y) is 20,

network(romance,y,x) is 95 and

network(romance,x,z) is 80,

This example translate to x and y are dating, y is head over

heels in love with x, while x has fallen out of love with y but

has eyes for a third character, z. These directional differences

in social networks represent the internal feelings of characters

toward each other (as opposed to the public nature of the

relationship dating), allow for a way of encoding dramatic

tension, and provide good hooks for rules. In the example

above, even through x is dating y, x’s low feelings of

romance toward y would make ending that relationship more

likely.

Cultural Knowledge Base

The cultural knowledge base (CKB) is a way to further

define the world that CiF-driven agents inhabit, providing

them with a variety of topics to bond over and squabble about.

The design intent for creating the CKB was to create a

sociologically rich representation of props. As props are much

more than simple physical objects in dramaturgical analysis,

CiF needs a way to understand the cultural importance of

items in relationship to the storyworld. Also, the relationship

of characters to the cultural items is very important. The

interplay between what a prop represents to a social group and

how an individual relates to that prop can vary widely. This

deviation is a great source for interactions based on social

norms associated with a prop and is an interesting tool for

seeding a storyworld with drama.

The CKB used for Prom Week has many items, including

zombie movies, roses, and webcomics. Every agent has one or

more connections to these items, linked through the uni-

directional phrases likes, dislikes, wants, and has: Gunter

dislikes bobbleheads, Oswald likes webcomics, Phoebie likes

zombie movies. Additionally, every object in the CKB can be

associated with universally agreed-upon properties in the

social world (e.g. roses are romantic, dodgeball is mean). This

allows for agents to interact with each other based on both

collective opinion and individual relationships to the objects in

the world. The CKB can be queried to search for patterns of

attitudes characters hold for objects:
CKB(item,(x, likes),(y, dislikes),

lame)

In this example, the CKB is queried to request a CKB item

culturally seen as lame that character x likes and character y

dislikes, which could perhaps contibute to y’s volution to

make fun of x. There are four parts to a CKB query, three of

which can be omitted in any query: 1) the item to look for,

item 2) the first subjective label, (x, likes) 3) the

second subjective label, (y, dislikes) 4) the truth label,

lame. Another example:

CKB(item,(x, likes), (y, likes),

funny)

This statement might be used in the left-hand-side of an

influence rule for a bonding social exchange, as the agents

find common ground in shared tastes.

C. Social Exchanges

Social exchanges are performances arising from particular

social contexts. The purpose of a social exchange can range

from wanting to display coolness and sophistication to

accomplishing a social state change with a particular

character, like making peace with an enemy. As with all social

performances, there are contexts where the exchange is

appropriate and others where a break of social expectations

would result. To ensure contextually appropriate

performances, social exchanges contain conditions that

determine when the social exchange is appropriate in general.

Some of these conditions, called preconditions, determine if

the social exchange is generally applicable (characters cannot

break up if they are not dating). To determine the validity of

specific performances (called an instantiation) in the social

exchange, there are additional conditions for each

instantiation. These checks are binary and any precondition or

instantiation condition that fails their evaluation cannot be

performed in the current social state.

If the general domain precondition check deems the social

exchange possible, CiF determines the character’s desire to

start the exchange toward another character. Social exchanges

include role-specific rules that help determine desirability.

These are the initiator and responder influence rule sets. These

influence rule sets are used in conjunction with the authored

rules for general social normalcy to determine the overall

desirability of a social exchange.

Social exchanges make use of the abstraction of influence

rules (described in their own section below) and an array of

parameterized performances of the social exchange. Every

social exchange has an initiator i, a responder r, and an

optional third agent referred to as the other, o. These roles are

designed to be extremely general so they can capture many

performances across a wide range of social exchanges while

being specific enough to make sense when encoding

performances. The initiator influence rule set and the

responder influence rule set serve distinct functions when

processing social exchanges. The initiator influence rule set is

used in the desire formation process to determine a character’s

volitions to play a social exchange with other characters. The

responder influence rule set factors in how the responder feels

about the exchange that she was included in. In a process very

similar to desire formation, the responder gets to determine

how they feel about the exchange – social exchanges were

designed to keep the agency of the responder intact. Each

instantiation can therefore be either a reject or accept type.

The rules, social change, and performances, when

considered in tandem, provide the real encoding of the

authorial intent of the social exchange – the name is simply a

label that should be succinct and readily evoke the domain of

the exchange. An authoring advantage of the social exchange

abstraction is that additional detail can be added to the social

exchange by simply adding more effect and instantiation pairs.

At the data structure level, social exchanges are comprised

of an intent, a set of preconditions, influence rule sets for i

and r, a set of effects, and a set of instantiations. As

mentioned above, the intent encodes the change i wants to

make on the social state. For example, the intent of the social

exchange “Ask Out” is relationship(dating,i,r).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

As previously stated, preconditions are conditions which must

hold true for the social exchange to happen. The social

exchange “Breakup” has a precondition of

relationship(dating,i,r); before i can breakup

with r, they must be dating.

Next, a social exchange has a set of effects, where an effect

is made up of a pair of rules called the effect conditions and

the social changes, and a label marking the effect as either

‘accepted’ or ‘rejected.’ The effect conditions dictate what

must be true for this effect to take place, and the effect

changes outline how the social state of the world is affected

based on this particular effect playing out. At a high level, an

effect represents one possible trace through a social exchange.

At minimum, a social exchange should have two effects—a

generic effect for the case in which the game is accepted (the

sum of all of the rules factoring into r’s considerations was

positive) and another for rejection (the sum was negative).

However, through the use of effect conditions, additional

considerations can be taken into account which may impact

the social space in additional ways. For example, given

trait(cold,i), “Break Up” may not only lead to

relationship(~dating(i,r)), but could also have

more serious repercussions such as

relationship(~friends(i,r)) or

status(AngryAt(i,r)). If multiple effects have

conditions which evaluate as true, the most salient effect is

chosen, with saliency being a function of which true condition

rule has the most predicates.

The final component to a social exchange is a set of

instantiations. An instantiation has a performance consisting

of lines of dialogue, each tagged with animations that

communicate state change and the justifications for the state

change using hand-authored, templated natural language. As

mentioned earlier, each instantiation is associated with some

social change that reflect the performance and a condition that

must be true for the instantiation to be performed.

D. Social History

In role performances in dramaturgical analysis as well as in

semiotic view of self, an actor’s history and experiences are a

major factor in all aspects of performance. CiF’s social facts

database (SFDB) is a data structure that keeps track of the

social history of the storyworld so that it can be queried for

socially relevant information by CiF’s processes.

The SFDB stores a context entry for social exchanges

played and every trigger rule that affects social state change

(see the visualization in. Additionally, any specifically

mentioned cultural item, character reference, or social

exchange label (such as mean, funny, and nice to) are stored in

a social exchange context entry for use in future social

exchanges. Through this, agents may reason over socially

complex thoughts that take into account not only their current

state, but the social history that led to them possessing this

state. For example, Naomi will be more interested in dating

Simon if Simon has done several nice things to her recently.

Relevant historical facts in the SFDB can also be explicitly

referenced during performance realization, in which state

change is communicated to the user through hand-written

instantiations.

E. Rule System

CiF’s rule system is the mechanism by which social

reasoning is encoded. A rule detects a specific condition in the

social space. When evaluated, the left-hand-side (condition) of

the following rule can detect when two characters have a

strongly romantic dating relationship:
relationship(dating,x,y) and

Network(romance,x,y) > 66

This condition is made of up distinct parts that are

consistent with the previously detailed ways of representing

the social state. The first,

relationship(Dating,x,y), is a simple check to

determine if x and y are dating. The second is a look at x’s

feeling of romance to y in a social network, or

Network(romance,x,y) > 66. These parts are

primitives in CiF and can be quickly and easily checked for

truth. Rule primitives in CiF are known as predicates.

Rules in CiF are Horn clauses meaning that their predicates

are conjunctive (or connected by a logical “and”) and each has

an implication
1
. The benefits of conjunctive rules are that they

are easier to author (this removes the dependency of authors

knowing logical operations by creating an “everything must be

true” rule authoring environment) and they are more efficient

to evaluate. This evaluation efficiency trick is used by the

Prolog logical inference programming language [16] and is

achieved by making rule evaluation deterministic. If other

logical operators were used, such as “or” or disjunctions, rule

evaluation would become non-deterministic and would result

in a large and more unpredictable search space. The

drawbacks of being limited to conjunctive rules is that more

abstracted situations, such as a rule to capture if two characters

are either dating or friends with a high level of romance, could

not be written as the following condition:
(relationship(Dating,x,y) and

relationship(Friends,x,y)) or

network(Romance,x,y) > 66
 However, the space denoted by the disjunctive rule can still

be represented in CiF in the form of two separate left-hand-

sides, or conditions:
relationship(Dating,x,y) and

network(Romance,x,y) > 66

relationship(Friends,x,y) and

network(Romance,x,y) > 66

Rules are evaluated by CiF in nearly all of its processes. As

it is intended that a majority of rules will contain character

variables, specific characters must be bound to rules for them

to be properly evaluated. CiF’s processes manage variable

binding internally. Every process has a different context:

forming desires considers every social exchange for every

combination of two or three characters, while social exchange

play has a determined set of characters.

To add an additional level of utility, CiF allows rules to be

created, valuated, and evaluated external to its processes. An

1 Horn clauses in their definite form are disjunctions of literals with at most

one positive literal (i.e.). A logically equivalent form that is

conceptually useful for influence rules in CiF is conjunctive and an

implication (). A conjunctive expression with an implication is
useful in CiF rules as each defines a social state and, when true, implies things
like a weight to a desire or that a social exchange is possible.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

application that employs CiF can create rules that can be

evaluated at any time. External rules are required to provide

such a binding of characters to character variables.
CiF uses rules to reason over the social world when making

decisions about social exchanges. To calculate a character’s

will, or volition, to perform social exchanges, some rules are

given a weight to aid in comparing social concerns. The rule

data structure is used in or as a foundation of every data

structure in CiF that needs to query the social world. The

remainder of this section is a discussion of rules, the

predicates that form these rules, and several ways in which

rules are used.

Predicates

Predicates are the binding between the current social state as

modeled by CiF and the authoring in social interaction

patterns and social norms. They are representational primitives

that can be evaluated for truth in a specific social state.

Predicates have three areas for configuration. First is a set of

up to three characters or character variables that will bind to

characters during evaluation. Next is a predicate type

corresponding to aspects of the social environment modeled

by CiF consisting of character traits, relationships, statuses,

social network values, history in the social facts database

(SFDB), and cultural items in the world found in the cultural

knowledgebase (CKB), which are described in detail in the

Error! Reference source not found. section.

The final area for configuration is the details of exactly how

the predicate is evaluated, or the evaluation mode. A predicate

can be evaluated via a few methods. These different modes of

evaluation are a key feature as they allow the predicate to

capture more sophisticated concepts of social space. CiF

supports four modes of predicate evaluation: true now, intent,

true in history and times true.

In true now mode, the rule is immediately evaluated for

truth. This is the default (and most common in Prom Week)

evaluation mode for predicates. SFDB labels cannot be True

Now by design.

The intent mode is used during desire formation and

encoding the intended consequences of social exchanges.

While their primary use is internal to CiF, external rules that

contain Intent evaluation mode predicates can be used if a

social exchange reference is passed to the rule’s evaluation

method.

Every predicate other than trait and CKB predicates can be

evaluated in True in History mode. True in History

evaluations determines if the predicate is in a change rule in

any SFDB entry (primarily social exchange and trigger

entries). SFDB type predicates default to True in History

mode. SFDB type predicates and other types of predicates that

use the True in History mode seem similar at first glance. In

fact they are similar. The main difference lies in authoring use

(SFDB labels are meant to capture an impression of a social

exchange like "mean" or "nice"), evaluation efficiency

(comparing a predicate to all predicates that have taken effect

in the past is expensive), and specificity (there are

circumstances where knowing if a character increased their

cool network value toward another character by 33 less than

four turns ago is very useful).

The times true mode determines how many times the

predicate is true in the current social state. For example, to get

the status of popular, a character needs to have three or more

friends; or a character could be "wicked cool" if more than

four other characters have a cool network value towards that

character higher than 66. This predicate both allows for rules

involving more than three characters and simplifies writing

long rule conditions. For example, take a long condition:
relationship(Dating,x,y) and

relationship(Dating,x,z) and

relationship(Dating,x,w) and

relationship(Dating,x,u)

This could be rewritten as a single “times true” rule. Times

true requires a couple pieces of information. The first is how

many times does the social state represented by the predicate

need to be true? In the above examples, this would be set to

four. Second, what character variable bindings should be held

static: the accepted values are "first," "second," and "both." In

the above example, we could set the first character variable x

to be static. CiF would then determine how many characters

could be bound to y to make the predicate evaluate to true.

The number of true bindings is then compared to the Times

True number to finalize the evaluation.

The example of the “Wicked Cool” status would have

"second" as the character variable binding to be held as static.

With a Times True predicate of network(Cool,x,y) and

a Times True number of four, the first character variable x

could be bound to other members of the cast to see if the

number of true bindings is four or above.

TABLE I

EXAMPLE INFLUENCE RULES FROM PROM WEEK

Condition
(Left-Hand-S

Weight to an Intent
(Right-Hand-Side)

Description

status(CheatingOn,r,i) intent(relationship(Friends,i,r)) –

15
If you are being cheated on, you want to

be friends with them less.
relationship(Dating,i,r)

and

status(AngryAt,i,r)

intent(network(Romance,i,r) +) – 1 If you are dating someone you are angry
at, your desire to be romantic with them is

lessened.

status(HasACrushOn,i,o)

and

SFDB(Romantic,r,o)

intent(~Relationship(Friends,i,r)) +

3
If your crush has done something

romantic to you in the past, you are less

likely to be friends with them (in favor or

being “more than friends”)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

Combinations of these evaluation types yield interesting

results. For example, if an SFDB predicate is evaluated with

the Times True mode, it will return how many times that

particular SFDB label was encountered by the characters

assigned to the predicate’s roles in the past within a history

window, allowing for characters to know, for example, how

many times another character has been romantic towards them

in the last ten moves. Some evaluation modes can be

combined. Times True and True in History can be used in the

same predicate to perform detailed mining of the social

history; CiF could find out how many times a character has

been cheated on or broken up with, and some storyworlds

might trigger a "freak out" behavior if many bad things happen

to a character.

Armed with a detailed description of predicates and a

general understanding of rules, rules external to CiF can be

constructed. At a high level, the process is not complex; create

a rule, fill the rule with predicates, then evaluate the rule (the

right-hand-side of the rule is to be handled by the external

process).

Influence Rules

Influence rules are CiF rules where the left-hand-side is a

social condition and the right-hand-side consists of a weight

and intent pair. CiF’s processes evaluate influence rules and

add the weight to a character’s desire toward the intent

predicates when the rule’s condition evaluates to true. Intents

can be any predicate type that is mutable (which means the

CKB and Trait predicate types are ineligible) as intents imply

changing the social world in some way. Though CiF supports

multiple intent predicates per influence rule, that capability

has not been used in any significant way. Some influence rules

authored for Prom Week are can be seen in Table 1.

Most story-focused games model a character’s willingness

to engage in a behavior with a simple story progression point

or characteristic threshold value. To enable greater dynamism,

CiF employs influence rule sets (IRSs) — sets of rules that

influence the desires of the agents to engage in social

exchanges. The right-hand-side of every rule inside of an IRS

is a weight that represents how important the rule is in

determining intents, where an intent is the intended change in

social state after performing a social exchange (e.g. have two

characters start to date). All rules, both in all initiator IRSs and

in all microtheories (discussed below) are considered and their

weights tallied—the social exchanges with the highest scored

weights represent the social exchanges the initiatorwants to

perform most. A similar scoring mechanism is used for the

responder r, with one small caveat; r need only decide

whether to accept or reject the proposed social exchange’s

intent.

Time Ordered Rules

During the development of CiF, we encountered authoring

situations where temporal reasoning was useful, especially

capturing chains of social state change in history. When a

character has a second character do something mean to them,

and then a third person is mean to the second, the first

character should have an increased desire to be friends with

the third. This “knight in shining armor” influence rule would

be impossible to capture without encoding its chronology.

Time ordered rules are an alternate evaluation mode to rules

that allows for this type of temporal evaluation.

Time Ordered evaluation mode for rules follows an alternate

evaluation path from the default True Now mode. Each

predicate has a Time Order property that places the predicates

into time groups (the default Time Order value is 0 which

means current time). The predicates are evaluated in ascending

Time Order value and are evaluated in True in History mode.

All rules with a Time Order less than 1 are evaluated

without temporal ordering constraints (this is not shown in

code as the predicates are evaluated in the default True Now

mode). This function tolerates gaps in order, meaning a rule

can have predicates of orders 0, 3, 9, 100. Gaps in Time Order

values are ignored. If there are multiple predicates of the same

order in the rule, they must all be true after the next lowest

order and before the next highest order. Any predicate of the

same order is considered true as long as all other predicates of

an identical are true.

Microtheories

The power of influence rule sets is great, but if each set of

rules contains repetitions of influence considerations that also

apply in other situations, we have found that rule sets can

become unwieldy and difficult to maintain during revisions.

To address this, we have introduced the concept of

TABLE II

TEMPLATES IN CIF’S NLG SYSTEM

NLG Tags Examples and Explanations

Roles %i% %r% %o% The name of the character bound to the role slot.
Role Possessive %ip% %rp% %op% The corresponding character name in its possessive form.

Character Locutions %greeting% %shocked% %positiveAdj% %pejorative% %sweetie% Character-specific utterances.

Pronouns %pron(ROLE,MALEFORM/FEMALEFORM)%

SFDB Entry %SFDB_(LABEL,ROLE1,ROLE2,WINDOW)% Inserts a SFDB reference of a previously played social

exchange that matches the label, roles, and occurs in a window of time.

CKB %CKB_((ROLE_1,SUBJECTIVE_LABEL1),(ROLE_2,SUBJECTIVE_LABEL2),(TRUTH_LABEL))%
Inserts the name of an item that matches the specified CKB query.

Conditional Statement %if(ruleID,text to display)elseif(ruleID,text to display) else(text to display)% Inserts text according to rule

evaluation. There can be arbitrarily many elseif clauses.
Topics of Conversation %toc1% %toc2% %toc3% Either an SFDB entry lookup or CKB item that is determined when the template is

first processed and is stored to be used in the rest of the performance. A topic of conversation is metadata to the

template and is specified by either a CKB or SFDB NLG tag.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

microtheories in CiF to capture knowledge about social

dynamics that apply across multiple social exchanges. The use

of microtheories is an authoring strategy that helps tame the

complexity of what is essentially a big bag of rules. The

microtheory library constitutes a large repository of rules, split

between dozens of microtheories. A microtheory consists of a

definition and a pair of influence rule sets. The definition of a

microtheory is a condition, often times consisting solely of

one predicate; for example,

relationship(friends,x,y) is the definition of the

Friends microtheory. Only microtheories whose definitions

evaluate to true in the current context are considered when

calculating volitions. The rule set then provides a general

understanding of what it means to be friends; the first set

applies to i’s considerations, the second to r’s. For example,

friends are more likely to get along, and less likely to become

enemies, than strangers.

Rules in microtheories are essentially shared by all social

exchanges. This abstraction permits the initiator and responder

IRSs associated with specific exchanges to focus on capturing

the n uances which differentiate social exchanges from one

another. For example, status(

feelsSuperiorTowards, x, y) would generally

negatively impact x’s desire to befriend y, which is reflected

its own microtheory. However, when taken in the context of

the social exchange "Give Advice," it is reasonable that x

would want to give advice to y, a social exchange that—given

the right context—can lead two characters to friendship.

F. Performance Script Generation

CiF generates a performance scripts that are customized to

the acting characters via a template-based natural language

generation (NLG) system. This system populates designated

areas of dialogue templates that are as simple as character

names or as complex as conditional statements determined by

arbitrary CiF rules.

The NLG templates are composed of literal and procedural

pieces. The procedural pieces are denoted by pairs of %

(percent signs) in a template while any text not wrapped in %s

are output with no modification from the NLG system. For

example, a small template, “Isn’t %pron(o,he/she)% cool!?!”

would be transformed into “Isn’t she cool!?!” if the character

bound to the other role was female. A complete list of

template text options and their usage is in Table 2.

An example template that uses many of the tags can be

found in Prom Week’s Declare War social exchange.

Performance (or instantiation) number 18 includes all three

roles (initiator, responder, and other) and makes use of the

more straight-forward tags. The instantiation is paired with a

condition rule and social change rules shown respectively

below and is followed by the NLG template (the tags are

bold):
Relationship(Dating,i,o) ^

relationship(Enemies,i,r) ^

relationship(Friends,r,o)

Network(buddy,r,o) + 10 ^

Network(buddy,i,o) +10 ^

SFDB(Nice,o,r) ^ SFDB(Nice,o,i)

Initiator: %greeting% %r%.

Responder: What do you want %i%?

Initiator: I’m sick of you hanging out with %o%. If you

keep this up I’m going to have to take drastic actions.

Responder: What are you talking about?

Other: Hey guys, what are you up to?

Responder: Your %gender(i,boyfriend,girlfriend)% is

acting crazy. It’s like %pron(i,he/she)% is trying to start

WW3 or something.

Initiator: I just can’t handle it when you hang out with

%pron(r,him/her)% all the time.

Other: Look, %r% is just my friend, you are my

%gender(i,boyfriend,girlfriend)%. You two are going to

have to deal with that.

Responder: Whatever happens I’m not being friends with

%pron(i,him/her)%.

Initiator: Me neither.

Other: Chill the freak out. Both of you.

Initiator: Consider this war postponed... for now.
If the template was processed with Buzz as the initiator,

Simon as the responder, and Naomi as the other, the template

would be transformed into the following dialogue (the text

generated for the tags is bold):

Buzz: Uhhhh Simon.

Simon: What do you want Buzz?

Buzz: I’m sick of you hanging out with Naomi. If you keep

this up I’m going to have to take drastic actions.

Simon: What are you talking about?

Naomi: Hey guys, what are you up to?

Simon: Your boyfriend is acting crazy. It’s like he is trying

to start WW3 or something.

Buzz: I just can’t handle it when you hang out with her all

the time.

Naomi: Look, Simon is just my friend, you are my

boyfriend. You two are going to have to deal with that.

Simon: Whatever happens I’m not being friends with him.

Buzz: Me neither.

Naomi: Chill the freak out. Both of you.

Buzz: Consider this war postponed... for now.
The following example, Bicker instantiation 15, has a topic

of conversation %toc1% defined
2
 by the tag

%SFDB_(Romantic,r,o)% and shows how a topic of

conversation tag is used:

Initiator: Hey %r%... You’ve really been hanging out with a

lot of new faces lately...

Responder: So?

2 Topics of conversation ensure that multiple references to CKB or SFDB

queries will be constant throughout a performance. If a performance has a

topic of conversation, the query that will replace topic of conversation tags is

ran once and used throughout the performance. This is necessary as CKB or
SFDB queries randomly select an entry from all entries that satisfy the query.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Initiator: I dunno, it just makes me a little uncomfortable

that you’ve been spending more time around them, than

me...

Responder: Listen, you gotta get over this ‘little

uncomfortable’ thing. When you say stuff like this, it

really makes me feel suffocated.

Initiator: I just wish you’d stop giving me reasons to worry.

Responder: What reasons to worry!? Sheesh %sweetie%,

just quit worrying so much.

Responder: Although, your worries are kind of justified...

Like that time when %toc1%...

Initiator: You’re right %sweetie%. I’m sorry. I love you.

Responder: Yeah... Totally.
With Kate as the initiator, Monica as the responder, and

Nicholas as the other, %toc1% would be replaced with a

textual reference to a past social exchange between Monica

and Nicholas. In this case, that exchange would be when

“%i% kissed %r% behind the bleachers after tennis practice”.

In these references to the past, the roles would be filled in with

the context of the past exchange with respect to the characters

in the current exchange (basically matching the characters of

the past to the pronouns of the present). As the past social

exchange had Monica as the initiator and Nicholas as the

responder, %toc1% would be spoken by Monica as “I kissed

Nicholas behind the bleachers after tennis practice”. Here is

the final dialogue:

Kate: Hey Monica... You’ve really been hanging out with a

lot of new faces lately...

Monica: So?

Kate: I dunno, it just makes me a little uncomfortable that

you’ve been spending more time around them, than me...

Monica: Listen, you gotta get over this ‘little

uncomfortable’ thing. When you say stuff like this, it

really makes me feel suffocated.

Kate: I just wish you’d stop giving me reasons to worry.

Monica: What reasons to worry!? Sheesh love-monkey, just

quit worrying so much.

Monica: Although, your worries are kind of justified... Like

that time when I kissed Nicholas behind the bleachers

after tennis practice...

Kate: ...

IV. EVALUATION

To evaluate Prom Week and CiF in light of system

responsiveness and variation to player actions, play traces can

be analyzed to determine how CiF is responding to real play

situations. Even with the large amount of variation supported

by CiF in a storyworld as content-rich as Prom Week, there

are reasons why players could potentially be exploring a very

small space of the possible story. The cast of characters in a

level could have very little desire to interact with one another.

Overly restrictive story goals could be constraining player

choice into narrow spaces of interaction. The balance of

microtheories and applicable social exchanges could leave few

social exchanges for the player to choose from. Even with

involving players from Prom Week’s alpha to its release, only

a small slice of the possible game states could be seen from

user testing.

To gain a better understanding of the variation in stories that

players experience in the wilds of public release, a holistic and

detailed understanding of the play traces is useful.

A. Play Traces from Prom Week

As players interact with Prom Week, the system saves their

interactions with the game. These traces provide data for

saving and continuing play sessions and contain the

information needed to re-simulate the social state created by

the player. After the player exits a play session or completes a

level, Prom Week sends a trace to a server. The trace is

associated with an anonymized ID that represents the player

and is used to track a player across play sessions.

Each play trace consists of the game events chosen by the

player that have an effect on the social world. Each event is

stored with enough context to recreate the social world

constructed by the player given Prom Week’s initial state. The

SFDB was designed to keep a record of CiF’s activities and

the social exchanges played, statuses timed out, and triggers

fired. Additionally, Prom Week uses the SFDB to store when

and how the player uses story points. When sent to the server,

the SFDB is made into XML with included data about the

level.

From when play traces were first collected in beta on

December 10
th

, 2011 to May 17
th

, 2012, players have

generated a total of 28,407 traces. Of these traces, 7,074 took

place in tutorial levels, 504 were of the goal-less freeplay

mode, and the remaining 5,425 took place in Prom Week’s

stories. Only the 5,425 story play traces generated after the

official release of Prom Week on February 14
th

 2012 are used

in this evaluation.

The story play traces were generated each time a level was

successfully ended (either the level clock was clicked or the

player ran out of time) or a story ending was reached (a prom

ending was seen). The release version of Prom Week had 5

playable stories: Doug, Oswald, Simon, Monica, Edward and

Lil (for a small time right after release, Naomi’s story was also

playable).

B. Gameplay Customized Storyworld Exploration

To get a sense of how CiF’s simulation and Prom Week’s

gameplay impact the actual choices presented to the player,

level traces were analyzed and visualized using the Façade

Log Analysis and Visualization Tool [17], [18], a visualization

tool that aims to enhance the current toolset for studying

interactive narratives. This tool helped in forming an

understanding of how players were interacting with the

released version of Prom Week. Even though the player has

many options of social exchanges to choose from, it is not

clear without evaluation that there are enough paths through

the story space to satisfy the whims of each individual player.

Furthermore, story goals, level casts, and the desires of the

characters themselves may restrict the options available in

such a way that many players will be forced down a narrow

few paths in their pursuit of story goals.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

We were pleased to discover that there was a very large

degree of variation in the way that players navigated the social

space. Examining a tree map representing the social moves

selected during the final level of Simon’s campaign reveals

that, of the 263 unique playthroughs we analyzed, no two were

exactly alike; the space was rich enough to allow for an

entirely unique play trace per player. Figure 1 is a tree graph

of the play traces analyzed for Simon’s campaign. Each node

represents a selected social exchange, each of which results in

changes to the game state (e.g. relationships starting or

ending). A path through the tree is the sequence of social

exchanges a player made from the starting state in the first

level (the root), to an ending (a leaf). Although there are a

fixed amount of maximum turns in Simon’s campaign, not all

paths in the tree are the same length as players have the option

of skipping remaining turns and jumping ahead to the next

level. The color of the nodes is a heat map indicating

frequency of node visitation along that specific path; red is

frequently visited (i.e. several players followed that exact

same route up to the point of that node), and dark blue means

visited only once (i.e. the route to that node was experienced

by only a single player). For readability purposes, the nodes

have been collapsed to the names of social exchanges selected,

when in actuality gameplay moves are identified by the social

exchange and the two characters to perform that social

exchange. Including this differentiator would have further

increased the branching of the tree, but we claim that it is

already branchy enough for the purposes of validating our

hypothesis of high variability.

 The average indegree (times a node was encountered by a

player) of a node in this graph is approximately 1.11; though

as mentioned above there are a few nodes towards the

beginning that are selected many times––“share interest” and

“confide in” are popular starting moves, happening 91 and 40

times respectively—the vast majority of story traces have

nodes that are visited precisely once. This means the play trace

is unique because no other trace is composed of the same

sequence of social exchanges.

 Performing n-gram analysis
3
 revealed some interesting

statistics on the patterns of sequences of social moves played

(this analysis is explore in more detail in the next section).

Using 1-gram analysis, there are 38 unique social moves that

players employed on this level, out of a total possible 39 social

moves that exist in the game. Using 3-gram analysis, we have

2521 unique patterns, of which only 80 appear more than 10

times. With 6-gram analysis, there are 5066 unique patterns

of social exchanges, one of which occurred 16 times, another

10 times, and all the rest less than 5 times. The fact that so

many separate patterns exist, with so little repetition, indicates

that players were able to find their own way through the story

space. Moreover, the n-grams that have the most repetition

are situations in which the same social exchange was played

multiple times in a row. Though apparently there is a player

type that relies on a strategy of brute force (for example,

attempting to ‘woo’ six times in a row), they are dwarfed by

the number of other patterns exhibited.

3 N-gram analysis is used to find repeated patterns of varying lengths in

corpora.

Figure 1. A play trace graph showing how often each distinct path through Simon’s story was taken (shown by the color and number associated with

each node). The large band of nodes seen at the top of the diagram represents approximately one third of the total size of the complete map. The cutout
shows a section of the map in detail including examples of social exchanges (like “pick-up line” and “confide in”) that appeared in more than one play

trace. The majority of play traces are unique.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

 Another interesting point was discovered by examining the

tree graph of social exchanges. The sheer breadth of the tree

gives a positive view of just how much variability there is in

player choice; not only does the system allow for variability,

but players are taking advantage of it as well. Additionally,

though there are only 11 nodes that players chose for the first

move, there are 79 different nodes selected for the second, and

143 for the third. By the fourth turn, nearly every gameplay

trace is unique. Even traces with subtle differences in

gameplay actions (for example, the sequence of social actions

“reminisce”, “confide in”, “ask out” as opposed to “confide

in”, “reminisce”, ask out”) can result in remarkably different

traversals through the social state, as Prom Week keeps track

of the specific social exchanges and instantiations that the user

has seen and incorporates them into future social exchange

selection. Moreover the specific ordering of social changes

also impacts the formulation of which social exchanges

characters want to play with each other, thus even seemingly

similar play traces can be considered unique.

 The general trend of paths becoming unique can be seen

across the stories and is even more prevalent in the more

difficult stories of the late game. Take Oswald’s story as an

example, which has 390 level traces that all begin in the same

starting state. Twenty-five different opening moves were

selected with an average indegree of 15.6. After the second

turn the average drops to 2.36. The average dips to 1.27 after

the third turn, and hits 1.07 after the fourth.

 The above supports our first hypothesis of the variability in

Prom Week. The low average indegree indicates that we are

approaching a completely unique playthrough experience for

each player; the large number of unique n-grams even for

small n indicate that these unique playthroughs consist of

different patterns of play; and the rapid branching factor

means that the little overlap that does exist between players

quickly separates into distinct traces. Given all of this, we

claim that Prom Week was successful in providing a game

space with large amounts of variability, even if, as we see

below, players selected between only a handful of the total

possible options on the first turn.

 The relatively low variability seen during the first turn is

actually positive evidence for our second hypothesis: that

Prom Week is specifically providing large variability in the

service of making stories playable. There are five characters in

Simon’s first level, and each character wants to engage in five

possible social exchanges with each other character (the top

five social exchanges character A wants to perform with B

given the desires computed by CiF for character A). Since the

player picks a unique initiator and responder, this means that

there are at least 100 potential opening social exchanges (the

actual number is a little higher, as players can spend story

points to unlock additional options).

 The fact that, of these hundred starting options, only eleven

were ever pursued between all of the gameplay traces implies

that players are not choosing moves at random, but attempting

to accomplish specific story goals. The beginning of each

level provides framing text which contextualizes the

characters’ relationships to each other with respect to

campaign goals, and offers small hints about how to

accomplish the goals. The hints take the form of advising the

player on which characters to form relationships with, but

offer no advice on which specific social exchanges to try.

This means that player actions are being motivated by story

goals without being dictated by them, providing a solid

foundation for our second hypothesis.

C. Strategy Driven Play

To determine if Prom Week promotes strategic play, this

section analyzes the player-driven paths through Prom Week

with respect to the successful completion of story goals. To

be seen as an indicator for strategic play, large portion of the

story paths - variable though they may be - need to lead to

successful goals. Story goals in Prom Week represent story

states for the player to make true in the storyworld. For

example, in Simon’s campaign, the player is tasked with

accomplishing five distinct goals, including having Simon

make five friends, having Simon begin dating someone, and

giving Simon an “ideal rival” by making him friends and

enemies with the same person. The combination of goals

accomplished determines which ending for the campaign the

player receives. Though endings are mostly pre-written to

leverage authorial control, there still exists template dialogue

within endings that allows for explicit references to specific

social exchanges that were chosen by the player throughout

the course of gameplay. This gives every choice the player

makes—and not just goal completion—an impact on the

campaign’s climax.

D. Story Goal Completion

Figure 2 shows another view of the 263 traces which start at

Simon’s first level and progress their way through the end of

his campaign. In this graph the color of the nodes shows the

impact of that social exchange on story goals. Story goal

completion ranges from dark blue to green, progress toward

the goals is in the range of light blue to orange, and moving

the social state away from the story goal (antiprogress) is

colored orange or red. This data was generated by taking the

same level traces used to generate Figure 2and running them

through CiF, keeping track of the goal accomplishments at

each game turn.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

 Simon’s campaign is the third non-tutorial level in Prom

Week and is of intermediate difficulty. Though some goals can

be accomplished in just a single turn (across all 263 traces for

Simon’s campaign, only 13 completed a goal on the first turn,

and only 17 completed a goal on the second), the rest take

several turns to complete. As seen inFigure 2, the story goals

were completed by players at many points along the story

paths. Of all of Simon’s traces, only a single one did not

contain any goal progress. All others exhibited at least some

amount of effort towards achieving story goals.

 Even though Simon’s campaign is of intermediate

difficulty, players still displayed an aptitude for achieving

goals. Between all of the play traces, goal completion (on any

of Simon’s five goals) was reached a total of 610 times

(average of 2.32 goals per player). If every trace from every

file had accomplished all five goals, the total would be 1,315,

which means that around 46% of all possible Simon goals

were achieved. Goal progress was made a total of 837 times

(average of 3.18 times per player), and goal antiprogress was

made a total of 44 times (average of 0.18 times per player).

 A concern when designing goals is that Prom Week’s

gameplay—manipulating social relationships within a setting

of cascading social influences in the pursuit of story goals—is

fairly unique. Since Prom Week serves as an introduction to

this genre of social puzzle game for most players, figuring out

the nuances of the system to make story progress could have

proven to be a challenge. Although the goal completion rate is

perhaps a little low for a campaign of only intermediate

difficulty, the results are encouraging because not only were

players motivated to pursue story goals, they were also able to

create a strong enough internal model of the storytelling

system to be able to pursue story goals with some amount of

success.

REFERENCES

[1] P. Harrigan and N. Wardrip-Fruin, Eds., Second Person: Role-Playing

and Story in Games and Playable Media. The MIT Press, 2007, p. 432.

[2] J. McCoy, M. Treanor, B. Samuel, B. Tearse, M. Mateas, and N.
Wardrip-fruin, “Comme il Faut 2 : A fully realized model for socially-

oriented gameplay,” in Proceedings of Foundations of Digital Games

(FDG 2010) Intelligent Narrative Technologies III Workshop (INT3),
2010.

[3] M. Lebowitz, “Creating characters in a story-telling universe,” Poetics,

vol. 13, no. 3, pp. 171–194, Jun. 1984.
[4] J. Meehan, The metanovel : writing stories by computer. [New Haven]:

Yale University Department of Computer Science, 1976.

[5] S. Turner, The Creative Process: A Computer Model of Storytelling and
Creativity. Psychology Press, 1994.

[6] B. Tearse, M. Mateas, and N. Wardrip-Fruin, “MINSTREL Remixed,”

in Proceedings of the Intelligent Narrative Technologies III Workshop
on - INT3 ’10, 2010, pp. 1–7.

[7] J. Orkin and D. Roy, “The restaurant game: Learning social behavior

and language from thousands of players online,” Journal of Game
Development, vol. 3, no. December, pp. 39–60, 2007.

[8] R. S. Aylett, S. Louchart, J. Dias, A. Paiva, and M. Vala, “Fearnot!: an

experiment in emergent narrative,” in Proceedings of Intelligent Virtual
Agents (IVA05), 2005, p. 305.

[9] S. Marsella and J. Gratch, “EMA: A process model of appraisal

dynamics,” Cognitive Systems Research, vol. 10, no. 1, pp. 70–90, 2009.
[10] M. Si, S. Marsella, and D. V. Pynadath, “Modeling appraisal in theory of

mind reasoning,” Autonomous Agents and Multi-Agent Systems, vol.

20, no. 1, pp. 14–31, May 2009.

Figure 2. A tree displaying the amount of progress towards goals in Simon’s campaign. The color of the nodes represents the type of goal progress. There are

three types of goal progress that can be combined in any way. Complete (Blue) means a goal was completed, progress (yellow) means that one aspect of a

goal was made true, and antiprogress (red) means that an aspect of a goal that used to be true was made false. White nodes mean that no progress (or
antiprogress) was directly made by making that social exchange, though the social state was still changed which could lead to progress in future turns. The

large band of nodes along the top still represents about 1/3 of the total play traces of Simon’s story.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

[11] R. Evans, “The Logical Form of Status-Function Declarations,” Etica &

Politica, vol. 11, no. 1, pp. 203–259, 2009.
[12] K. Erol, J. Hendler, and D. S. Nau, “Semantics for Hierarchical Task-

Network Planning.” 1995.

[13] D. Isla, “Handling Complexity in the Halo 2 AI,” Game Developers
Conference, p. 12, 2005.

[14] The Sims Studio, “The Sims 3.” Electronic Arts, 2009.

[15] R. Evans, “Re-Expressing Normative Pragmatism in the Medium of
Computation,” Proceedings of Collective Intentionality VI, 2008.

[16] A. Colmerauer and P. Roussel, “The birth of Prolog,” in Computer,

1996, vol. 28, no. 3, pp. 37–52.
[17] S. Sali and M. Mateas, “Using Information Visualization to Understand

Interactive Narrative: A Case Study on Façade,” in Proceedings of the

Fourth International Conference on Interactive Digital Storytelling,
2011, vol. 7069.

[18] S. Sali, “Playing With Words: From Intuition To Evaluation Of Game

Dialogue Interfaces,” UC Santa Cruz, 2012.

