
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 1, MARCH 2011 1

Launchpad: A Rhythm-Based Level Generator
for 2-D Platformers

Gillian Smith, Student Member, IEEE, Jim Whitehead, Senior Member, IEEE, Michael Mateas, Mike Treanor,
Jameka March, and Mee Cha

Abstract—Launchpad is an autonomous level generator that is
based on a formal model of 2-D platformer level design. Levels are
built out of small segments called “rhythm groups,” which are gen-
erated using a two-tiered, grammar-based approach. These seg-
ments are pieced together into complete levels that are then rated
according to a set of design heuristics. Generation can be controlled
using a set of parameters that influence the level pacing and geom-
etry. The approach minimizes the amount of content that must be
manually authored: instead of piecing together large segments of a
level, Launchpad uses base components that are commonly found
in a number of 2-D platformers. Launchpad produces an impres-
sive variety of levels which are all guaranteed to be playable.

Index Terms—Artificial intelligence, games, level design, multi-
level grammars, procedural content generation.

I. INTRODUCTION

A GAME level acts as a “container for gameplay” [1], pro-
viding the player with a space to explore and master the

game’s mechanics. Good level design is vital to a game’s suc-
cess. Despite this importance, the science behind level design is
poorly understood. With the rising interest in procedural level
generation, both as a research area and as a solution to con-
tent creation costs, it is important for us to formally model how
to recognize and design good levels. This deep understanding
helps us move beyond level generators that work by stitching to-
gether larger chunks of human-authored content, and are instead
capable of creating interesting levels from basic level compo-
nents. This paper presents Launchpad, a level generator for 2-D
platformers that is based on a model of rhythmic player move-
ment; this model is derived from analyzing existing games in
the genre.
Two-dimensional platformers (such as Super Mario World

[2] and Sonic the Hedgehog [3]) are well suited to research in
procedural level generation. Games in this genre have simple
rules but exhibit emergently complex level design. Furthermore,
game levels have a heavy influence on the player’s experience in
the game. This allows us to focus specifically on level design is-
sues such as physics constraints and challenge structure without

Manuscript received September 09, 2010; revised November 15, 2010; ac-
cepted November 17, 2010. Date of publication November 29, 2010; date of
current version March 16, 2011.
G. Smith, J. Whitehead, M. Mateas, M. Treanor, and J. March are with the

Expressive Intelligence Studio, University of California Santa Cruz, Santa Cruz,
CA 95064 USA (e-mail: gsmith@soe.ucsc.edu).
M. Cha was with the Expressive Intelligence Studio, University of California,

Santa Cruz, Santa Cruz, CA 95064 USA. She is now with OnLive, Palo Alto,
CA 94031 USA.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCIAIG.2010.2095855

facing complications from more sophisticated game mechanics
or narrative elements.
A key underlying idea for 2-D platformer level design, in

particular those that focus on dexterity-based challenges, is
a notion of rhythm and the timing and repetition of distinct
user actions [4]–[6]. Players strive to navigate complicated
playfields full of obstacles and collectible items. Manually de-
signed levels frequently contain a series of challenging jumps
that must be perfectly timed. The level generator presented in
this paper, called Launchpad, realizes this theory of level de-
sign. In order to capture the importance of rhythm, the level
generator is designed with a two-tiered, grammar-based ap-
proach, where the first tier is a rhythm generator and the second
tier creates geometry based on that rhythm; the end result of
this process is a set of “rhythm groups” that can be combined
to form complete levels. This separation of tiers ensures that
the intended rhythm is always present, regardless of geometric
representation.
Launchpad allows a designer to refine its generative space

by manipulating parameters that have a clear and intuitive im-
pact on generated levels. These parameters dictate a general
path that the level should take, the types and frequencies of ge-
ometry components, and how collectible items are distributed
throughout the level. Adjusting these parameters can drastically
alter the generated level.
The wide range of levels that Launchpad can generate points

to a greater need for techniques to evaluate the expressive range
of content creators. A common strategy for evaluating a gener-
ator is to show characteristic examples of the kinds of content
that can be produced alongside statistics on how many levels
can be produced and how quickly. While this approach provides
useful and interesting information about the generator, it does
not fully capture the range of content that can be created, nor
does it easily support analysis of how this range changes for
different fitness functions and generation parameters. We call
this quality of a content generator “expressive range.”
Off-the-shelf generators exist for procedural animations [7],

cities [8], and natural features [9]. As more of these tools be-
come available, it becomes increasingly important for a poten-
tial user to be able to understand the kinds of content a gen-
erator will give them in order to compare potential generation
techniques. Furthermore, understanding the expressive range of
a content generator is useful in driving future work in proce-
dural content generation because it can uncover unexpected bi-
ases and dependencies in the generator. This paper also presents
techniques for visualizing the expressive range of Launchpad
through applying external heuristics and clustering generated
content to easily explore the generated space.

1943-068X/$26.00 © 2010 IEEE

2 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 1, MARCH 2011

The primary contributions of this work are:
1) a formal model of the components and structure of plat-
former levels;

2) an autonomous, designer-guided level generator for 2-D
platform games based on this model;

3) methods for evaluating and visualizing the expressivity of
a content generator, as applied to Launchpad.

II. RELATED WORK

A. Domain Analysis for Level Design
There are a few books on game design that address con-

cepts relevant to level design. For example, Salen and Zim-
merman’s Rules of Play is primarily about game design, but
does discuss important level design concepts such as repetition
and interactivity when discussing crafting the play of experi-
ence [10]. Books that do address level design primarily address
its general principles. Level Design for Games [11] discusses
the importance of spatial layout and atmosphere. Fundamentals
of Game Design [12] and Beginning Game Level Design [13]
also largely focus on general issues, giving a couple of para-
graphs on level design for specific genres. Short descriptions
of genre-specific level design are not sufficient to provide a de-
tailed understanding of the structural interrelationships of ele-
ments in a level.
While there has not been a great deal of analysis for

genre-specific level design, there are a few notable excep-
tions. Nelson’s article on level elements in Breakout is a good
example of the kind of detail needed to fully model levels
[14]. His article takes a reductionist view of level design
for Breakout-style games, first decomposing levels into their
genre-specific constituent components, and then giving rules
for how to compose level elements into interesting designs.
This approach of reducing levels to their base components
and giving rules for their recombination is the essence of the
modeling technique we used in analyzing platformer levels.
There is also work in identifying and analyzing design pat-
terns in levels. Hullett and Whitehead identify a number of
common idioms used in first person shooter (FPS) levels [15],
such as arenas and sniper nests. While difficult to compare
analyses of such different genres, these idioms seem analogous
to the cells in our model for platformer levels, as each idiom
contains a number of different, potentially disjointed player
actions. Milam and El Nasr identify patterns in levels covering
a number of different genres [16]; however, these patterns are
more focused on categorizing player behavior and motivation,
rather than level geometry. In future work, patterns such as
these may be useful for guiding level generation based on our
framework presented here.
There are also two papers analyzing level design aspects of

platformers in particular. Boutros writes about common design
goals in the bestselling platform games [17], focusing especially
on visuals, controls, rewards, and challenges. He analyzes the
first 5–10 min of gameplay for a number of games, listing the
challenges that the player will face. Dormans writes about em-
bodiment, flow, and discovery in platformer levels, and provides
numerous examples of common tropes in platformer levels [18].
Missing in these two papers is a formal model of level design

and challenge structure, a prerequisite for a level generator that
cannot rely on hand-authored level components.
The importance and structure of challenge is central to our

model for how level components fit together, and especially in
our notion of rhythm groups. In his book describing the role
of a level designer, Byrne claims that challenge is the most
important aspect of level design [1] because it is the key to
the player enjoying the level. Nicollet also discusses the role
of challenge in dexterity-based games [6]. He creates a series
of rules for designing challenge, including the importance of
timing. These rules have provided insight on how to segment
levels into rhythm groups.

B. Procedural Content Generation

Procedural content generation is commonly used in games to
improve replayability by providing a new scenario each time
the player opens the game, or modifying the scenario whenever
the player makes a new choice. Recently it has also been used
at design time to help a designer create their own content for a
specific game. This section discusses techniques in procedural
content generation and how a player or a designer can interact
with a generator.
The first major game with procedural content generation was

Rogue [19], an ASCII role-playing game (RPG) created in 1980.
Its levels consist of arbitrarily sized rooms connected by corri-
dors, with enemies and treasure placed throughout them. Ene-
mies get progressively harder to defeat as play progresses, and
different treasure is scattered around the world: each time the
player loads the game, she is faced with a different dungeon to
explore. Rogue’s popularity spawned a number of “roguelikes,”
both ASCII-based and graphical.Diablo [20] was one of the first
graphical games with procedural content: much like in Rogue,
levels are still procedurally generated, but the content placed
into the levels such as wall textures, pillars, and enemies are
hand-authored. Roguelike approaches to level generation [21]
tend to be “bottom-up” techniques that involve fitting together
relatively large chunks of a level together according to simple
constraints. Roguelikes typically do not allow a user to exert
much control over the kinds of levels that are produced.
Spelunky [22] is an example of a recent roguelike-platformer

hybrid: Spelunky is a cave-exploring 2-D platformer game,
rather than the typical top-down RPG, which builds its levels
out of static, arbitrarily sized hand-authored pieces. These
pieces may contain many different actions for the player to
take, as opposed to Launchpad’s generator where geometry
is independently generated for each action. The pieces are fit
together on a square grid, with few rules governing how they
should be placed. Though this results in random, uncontrolled
level designs, this works because the player can modify the
level using bombs, or navigate seemingly impossible areas
with other tools such as ropes. Furthermore, the player is not
expected to be able to reach everything in a given level. This
generation technique is quite specific to the particular game
design, but would be inappropriate for, say, a Super Mario
World-style level due to the low level of authorial control it
provides. Launchpad’s generation technique is more broadly
applicable; it is designed for games that favor dexterity-based
challenges over exploration, and the underlying representation

SMITH et al.: LAUNCHPAD: A RHYTHM-BASED LEVEL GENERATOR FOR 2-D PLATFORMERS 3

is based on an analysis of a number of different platformer
games.
A detailed level analysis is also the basis of Dormans’s work

in procedural level generation for action-adventure games [23].
Dormans examined the mission and level structure of Legend
of Zelda: Twilight Princess levels. He also takes a two-layer,
grammar-based approach to level generation, first producing
missions using a grammar, then using shape grammars [24] to
create playable levels from generated missions. These levels
contain enemies, collectibles, and simple lock-and-key puzzles.
In both his generator and Launchpad, the more abstract tier is
used to provide a nongeometric structure based on intended
player actions. This idea is well expressed by Ashmore and
Nitsche [25] who, in discussing the lock-and-key quests they
generate for Charbitat, state that “procedurally determined con-
text is necessary to structure and make sense of this [procedu-
rally generated] content.”
Work that specifically addresses procedural level generation

for 2-D platformers is that of Compton and Mateas [5]. They
also split up levels into smaller sections and generate those
sections from individual platform tilesets. Our work differs
because our two-tiered approach to rhythm group generation,
by explicitly separating rhythm generation and geometry gen-
eration, means we can represent more variety in levels than
their pattern-building approach, in which rhythm is implicitly
determined from geometry decisions. We also provide control
over the output of the generation through a set of parameters
that a user can manipulate. Mawhorter and Mateas [26] use a
technique they call occupancy-regulated extension to generate
Mario-style platformer levels. This works by defining rules
for how hand-authored sections of a level fit together, and
expanding levels from a single seed section. These sections
can overlap with each other and form levels with multiple
paths through them. Their approach creates highly varied levels
with multiple paths and emergent properties, although at the
expense of being able to guarantee playability. It also has a
high authorial burden because the generator has no built-in
understanding of the actions the player is taking: the generator
is only as strong as the human-authored chunks it fits together.
Launchpad requires very little human authoring effort and can
guarantee that all levels it creates are playable, but currently
cannot create levels with multiple paths.
Hullett and Mateas [27] provide authorial control over the

scenarios that they generate for a collapsed structure emergency
rescue training game. A designer can specify goals for the sce-
nario, such as a half-flooded house or a room with collapsed
walls. These goals are the input to a hierarchical task network
(HTN) planner that performs the steps necessary to convert a
sound structure into a partially collapsed structure with the de-
sired qualities. Their approach differs from ours in that they start
with an existing structure that is changed over time by the gen-
erator according to certain rules, rather than creating a structure
from small components.
A separate strand of work in procedural content generation

uses PCG techniques to personalize content in a game, either
through adapting content to a particular skill level in real time,
or by determining a model of player behavior at design time
and creating a static level to fit that model. Launchpad instead

acts on an implied model of ideal player “speedrun” behavior
in which the player strives to be moving at maximum speed
for as long as possible and perfectly times jumps to overcome
obstacles. Work in this area includes personalized race tracks
for racing games [28], evolving weapons in a space shooting
game [29], and adapting Mario levels by manipulating param-
eters such as gap width and frequency [30]. The rhythm-based
generation technique behind Launchpad has also been used in
Polymorph [31], a platformer game with level generation-based
dynamic difficulty adjustment.
Although not in the realm of content generation for games,

other grammar-based approaches are related to our work. The
Instant Architecture project [32] uses grammars both for archi-
tecture generation and ensuring the correct distribution of at-
tributes. TableauMachine [33], an art generator, uses a grammar
for generating art, and their method for solving the problem of
under-constrained results through generate and test was the in-
spiration for our own implementation of critics.

III. DECONSTRUCTING PLATFORMERS
In order to build a content generator, it is necessary to first

have a formal model for that content. This model should de-
scribe both the basic components the generator can use as well
as rules for how these components can be combined. We built
our model for 2-D platformer levels by examining a number of
games that are exemplary of the genre, including Super Mario
World [2], the Sonic the Hedgehog series [3], [34], Yoshi’s Island
DS [35], andDonkey Kong Country 2: Diddy’s Kong Quest [36].
These games reveal a number of different styles of platformer;
for example, Super Mario World is characterized by a reward
structure closely tied to the probability of failure, and a single
path through the level with relatively few hidden areas acces-
sible from vines or pipes. The focus of the level design is the
challenge of completing each level through mastery of its dex-
terity challenges.
In contrast, Sonic the Hedgehog levels tend to have multiple

paths to completion with rings liberally spread throughout the
level, making it easy to collect rewards: a skilled player will col-
lect a large number of rings and extra lives to carry throughout
the game. The primary challenge in this game comes from mas-
tery of dexterity challenges, but also from choosing an appro-
priate path through the level. Sonic’s speed and agility, com-
bined with this level structure, invites a “speed run” play style.
Donkey Kong Country 2 places less emphasis on speed runs

and more emphasis on secret areas the player must find to col-
lect rewards and secret coins. Some of these areas are accessed
through mastering dexterity challenges, and many are hidden
from the player and must be discovered.
Despite the differences between these styles, there are a

number of similarities in their component elements and how
those components fit together to form a level. All of these
games require some mastery of dexterity-based challenge,
although the number and difficulty of these challenges may
vary. Furthermore, all of these games incorporate a sense of
rhythm in their pacing.
This section provides an analysis of existing, human-de-

signed platformer levels. The avatar as it relates to level design
is described first, followed by a categorization of the basic

4 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 1, MARCH 2011

Fig. 1. Hierarchical level framework. This conceptual model shows how the components in a level fit in to a more abstract structure. The boxes highlighted in
blue are implemented in Launchpad.

components found in levels, and finally a model for how these
components fit together spatially. An overview of this frame-
work is shown in Fig. 1.

A. The Avatar
The avatar is the character that is controlled by the player; al-

though there are sometimes multiple playable characters, such
as Diddy and Dixie Kong inDonkey Kong Country 2, the player
can usually control only one character at any given time. Avatar
choices are sometimes merely cosmetic, but there are often im-
portant differences in their behavior. For example, different ba-
bies in Yoshi’s Island DS bestow different abilities on Yoshi and
also change the physics of player movement, e.g., Baby Mario
allows Yoshi to dash, Baby Peach allows Yoshi to glide.
An avatar’s specific movement abilities vary per game, but

can be approximated using a simple physics model. The player
tends to have control over the avatar’s horizontal movement,
and limited control over vertical movement through jumping
and crouching. The model for player physics is discussed in
further detail in Section IV-B.

B. Level Components
Components of platformer levels are categorized by the roles

they play in a level. It is possible for level components to be
members of more than one category; for example, item boxes
in Super Mario World are considered primarily as collectible
items, but also as platforms because the avatar can walk along
the top of them. Example level components and their properties
include the following.
1) Platforms: A platform is defined as any surface that the

avatar can walk or run across safely. Often, objects that serve
some other primary purpose, such as item boxes in Super Mario
World, double as platforms. Platforms have physical properties:

a coefficient of friction, size, and slope. They can be in con-
stant or occasional motion, and often form paths planned by the
designer.
2) Obstacles: An obstacle is any construct in the level that is

capable of imparting damage to the avatar or interrupts the flow
of play by obstructing player movement. For example, a gap be-
tween two platforms is considered an obstacle, even though it is
not explicitly represented by an object in the level. Other obsta-
cles includemoving enemies and spikes, as found in a number of
platformers such as Sonic the Hedgehog. Obstacles can be over-
come by either removing them from the level (e.g., by jumping
on top of them), or by avoiding them entirely.
3) Movement Aids: Movement aids help the avatar navi-

gate the level in some manner other than by the player’s core
movement mode. Examples of movement aids include ladders,
ropes, springs, and moveable trampolines—all of these tem-
porarily modify either the direction or speed of player move-
ment. A spring is a movement aid that is used in Launchpad’s
level generator.
4) Collectible Items: All platform games have a reward

system, almost always in the form of collectible items. Col-
lectible items are any object in the level that provides a reward,
such as coins, rings, power-ups, or weapons. The reward value
often takes the form of points that can be redeemed in a variety
of ways, such as extra lives in Sonic the Hedgehog or unlocked
zones in New Super Mario Bros. [37]. Daniel Boutros gives a
detailed account of the design and structure of reward systems
in a variety of platform games [17].
Collectible items have a great deal of impact on the player’s

satisfaction in playing the game [38], but are also frequently
used in platformers to guide the player through the level. For
example, coins are often placed at the peak of jumps, or to indi-
cate that the player should move in a certain direction (Fig. 2).

SMITH et al.: LAUNCHPAD: A RHYTHM-BASED LEVEL GENERATOR FOR 2-D PLATFORMERS 5

Fig. 2. Use of collectible items. In this segment from Super Mario World,
Mario is poised to make a challenging set of jumps. The Yoshi coin has the
highest reward, and is placed in the highest risk area: above a platform that can
sink into the water. The three other coins show the player the ideal path from
that sinking platform to safe ground. Finally, there is a collectible item in the
form of an item box.

Fig. 3. Triggers. This section from a Super Mario World level shows an ex-
ample of a trigger: the “p” button turns blocks into coins, allowing the player to
collect a large reward at the expense of unleashing enemies inside.

5) Triggers: Triggers are interactive objects or gameplay ac-
tions that change the state of the level. For example, Fig. 3 shows
an example of triggers from Super Mario World, where Mario
can jump on the blue “P” button to turn all the blocks into coins.
Some triggers are also timed; for example, Yoshi’s Island DS re-
quires Yoshi to jump on a red button that turns red platforms
active. Yoshi then has a short amount of time to run across the
platforms and continue the level.
Triggers can add an interesting puzzle element to a platform

game. Shift [39] is a puzzle platformer that makes extensive use
of two main types of trigger: the shift key itself, which flips the
negative space in the level, and keys to unlock doors.

C. Rhythm as a Structural Representation

Rhythm and pacing are key to the player’s enjoyment of a
game [40], [41] and also contribute significantly towards the dif-
ficulty of platformers with dexterity-based challenges [6]. We
therefore chose to use rhythm as a way to structurally repre-
sent levels as a combination of rhythm groups. Rhythm groups
are short, nonoverlapping sets of components that encapsulate
an area of challenge. Each rhythm group consists of a rhythm
of player actions, and level geometry that corresponds to that
rhythm.

Fig. 4. Rhythm group example. This segment of a Super Mario World level
shows two rhythm groups, each surrounded by a black rectangle. The rhythm
groups are separated by a platform where no action is required to be taken,
allowing the player a brief rest before moving on to deal with the next obstacle.

Rhythm can be found in platformers whenever the player per-
forms actions such as jumping or shooting. These actions map
directly to the controller, and the rhythm with which the ideal
player must hit the buttons on the controller is the rhythm we
are defining. For example, a rhythm could be a series of three
short hops, or alternating jumping back and forth up a series of
platforms that form a ladder.
Fig. 4 shows an example of two rhythm groups from Super

Mario World. The leftmost group has the player perform two
identical actions: jumping to collect coins and to kill flying
goombas. Equally spaced between these two actions is the need
to jump for two coins above the middle platform. The right-
most rhythm group is shorter version of the same rhythm and
geometry pair. At first glance, it may appear as though the two
groups shown should actually be a single group, since the plat-
forms form a repeated pattern that the player must jump across.
However, coin and enemy placement means that the compo-
nents make up two separate groups. The key to this separation
is the middle pair of coins in the first group, and their lack of a
counterpart at the point where the two groups meet. In the first
rhythm group, an ideal player would perform a series of jumps
with minimal pauses to reach all the coins and kill the enemies.
At the place where the groups meet, the player has a short op-
portunity to pause, allowing him to correctly time his jump to
the next Yoshi coin and enemy. This pause forms a break in the
rhythm that would not be there if the player had coins to jump
for on that second peak.

D. Player Choice and Nonlinearity
Nonlinearity in platformer levels is represented by cells and

portals. This nonlinearity manifests itself in a variety of ways.
For example, in Sonic the Hedgehog, there are usually multiple
paths through a level. There are moments when the player can
switch between these paths, and the player often attempts to find
the path that allows her to complete the level in the shortest
amount of time. In our structure for levels, each point where
the paths meet is a portal.
Cells define regions of nonoverlapping, linear gameplay.

Their boundaries are set by the placement of transitions into
and out of the regions, such as a secondary entrance to a level,
a transition between paths through a level, or a portal to a secret
area in the game. Fig. 5 shows two examples of cells and por-
tals: the first is a scene from Super Mario World showing part
of a cell with a portal marking an exit from it. The pipe in the
top middle of the picture is a portal into a new area. The second
example from Sonic the Hedgehog is more complex: the two

6 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 1, MARCH 2011

Fig. 5. Cells and portals. Two examples showing cells and portals. The upper
figure shows a scene from Super Mario World with a single cell and a pipe that
forms a portal out of it. The lower example is from Sonic the Hedgehog 2 and
shows three cells: the upper area, the lower area, and the secret coins area to
the left. There are two portals between the upper and lower cells in the form of
moving platforms between them. There is a single portal to the hidden coin area
from the lower cell.

platforms marked as portals move up and down, providing a
transition to a different path through the level. Note that for the
sake of clarity, the figure does not have rhythm groups marked.
Knowing where the cells and portals are in a level helps us

analyze their structure and catalog the many paths through a
level. These paths may be of different difficulties and provide
different rewards, depending on the rhythm groups that make
up the cells along each path.

IV. CONSTRUCTING LEVELS

Launchpad uses much of this level framework in automat-
ically creating levels. To simplify the problem, we focus on
generating rhythm groups and using them to build single-cell
levels. Future work includes researching methods for in-
corporating triggers, secret areas, and multiple paths into a
grammar-based level generator. Fig. 1 highlights the portions of
the model for levels that are used in Launchpad. The platforms
which Launchpad can create are flat or sloped, and can move
along either horizontal or vertical paths. Implemented obstacles
are enemies that should be killed, enemies that should be
avoided (e.g., spikes), stompers, and gaps between platforms.
Collectible items are placed during a global pass after the level

Fig. 6. Launchpad architecture diagram. Blue boxes denote artifacts produced
by the system; green circles represent components of the generator, each of
which is influenced by design parameters.

has been generated: coins are positioned to guide players along
jumps, and as decoration along long platforms.
The rhythm-based method for generating levels is described

in Fig. 6. It begins with a two-layered, grammar-based ap-
proach for generating rhythm groups. The first stage creates a
set of beats, where each beat corresponds to a player action.
The second stage uses a grammar to realize this set of actions
into corresponding geometry according to a set of physical
constraints. This process creates a single rhythm group; many
unique rhythm groups are used in creating levels.
To form a complete level, rhythm groups are fit together side

by side, bridging them with a small platform that acts as a safe
area for the player. Many different levels are generated, forming
a pool of candidate levels which are then tested against a set
of design heuristics that select the best level. This level is then
modified by a global pass that adds collectible items according
to rhythm and geometry information, and ties platforms to a
common ground point.
Each stage of the level generation process has parameters that

provide direct control over the output of the generator. Table I
describes these parameters, and what stages they affect. A dis-
cussion of how these parameters affect the space of generated
levels is in Section V-D.

A. Rhythm Generation

Rhythms have three main properties: type, length, and den-
sity. The rhythm generator first assigns a value to each of these
properties based on the probabilities provided to the generator
(Table I). Example timelines for different combinations of these

SMITH et al.: LAUNCHPAD: A RHYTHM-BASED LEVEL GENERATOR FOR 2-D PLATFORMERS 7

TABLE I
PARAMETERS FOR LAUNCHPAD THAT A USER CAN MANIPULATE

Fig. 7. Example rhythms. These timelines show the effects of varying the
length, type, and density of a rhythm. Lines indicate the length of the rhythm,
and hatch marks indicate the times at which an action will begin.

properties are shown in Fig. 7. Each beat of the rhythm marks a
moment when the player takes an action by pressing a button.
Players can take two types of action: “move” and “jump.”

These actions also have an ending time, corresponding to when
the player lets go of the button. This process produces rhythms
like the one in the following, where the numbers after actions
correspond to the begin and end times of the action. A graphical
representation of this rhythm is shown in Fig. 8

move
jump
jump
move
jump
jump

In this example, the player starts moving at 0 s, and continues
moving until 5 s.While moving, the player jumps once at the 2-s

Fig. 8. Rhythm with actions. This timeline corresponds to the example rhythm
given in Section IV-A. The solid line denotes time that the avatar is moving, the
dashed line is time that the avatar is not moving.

mark and again at the 4-s mark, with each jump lasting 0.25 s.
The player then pauses moving at 5 s and begins moving again
at 6 s until the end of the rhythm. While moving here, the player
jumps once at the 6-s mark and again at the 8-s mark, this time
holding down the “jump” button for longer than previously.
The length associated with the “jump” verb corresponds to

the amount of time the player will hold down the “jump” button.
Since different hold times influence the height of the avatar’s
jump, it is important to keep these jump types distinct. For ex-
ample, the player may hold the button down for only 0.25 s,
resulting in a very short hop, or may hold the button down up to
0.75 s for a much longer jump.

B. Physics Constraints
The physics model maintains information about the avatar’s

capabilities and the different types of jumps available. The
model includes the avatar’s size, maximum movement speed,
initial jumping velocity, and the height the avatar can jump
given a short, medium, or long jump button press. For jumps,
the model includes the in-air time for each jump type, the

8 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 1, MARCH 2011

Fig. 9. Creating movement states. Two different types of jump can contribute
to different movement and jump state lengths. The blue area is the amount of
time consumed by the jump being in the air.

relative height difference for the two platforms on either side
of a jump based on this in-air time, and the velocity imparted
to the avatar by a spring. Available slopes for platforms are
also recorded. This model is ballistics based, extended to allow
variable jump heights due to different amounts of time the
jump button is held. This style is common for Mario-style
platformers. More advanced player physics, such as double
jumping or wall jumping, are not supported.
All this information is used to process rhythms created by the

rhythm generator into input suitable for the geometry grammar.
In doing so, this guarantees that all levels are fully playable.
Received verbs are first converted into a list of movement states
and a queue of jump commands. This is done by examining the
lengths of each action. Any time that the player is not “moving,”
they are considered to be “waiting.” Jump lengths are catego-
rized as either short, medium, or long based on the maximum
amount of time that the jump button could be held down. For
example, the example rhythm given above forms the following
set of states and jump queue:

States: [5, moving], [1, waiting], [4, moving];
Jumps: [2, short], [4, short], [6, medium], [8, long].

However, the jump length merely tells how long the player
holds the “jump” button; the actual time in the air varies based
on which jump type is chosen. A jump across a flat gap takes
considerably less airtime than a jump onto a spring. Therefore,
jumps consume some amount of the movement state list at the
time the jump occurs. For example, assuming there are only
two jump options (flat gap and spring), a jump across a flat gap
takes 0.5 s, and a jump onto a spring takes 1.5 s, processing
the first jump in our example could result in one of the two
configurations shown in Fig. 9. However, if the second jump
were to occur at 3 s rather than 4 s, the jump onto a spring would
no longer be a valid jump, as it would not end until after the next
jump should begin. In this case, the spring would be disallowed
from the set of geometry that could be used for that jump.

C. Geometry Realization
The movement states that are not fully consumed by jumping

and the queued jumps form the nonterminals in the geometry
generation grammar (Fig. 10). The “waiting” state is meaning-
less on its own, as there must be something to wait for. Gener-
ating geometry for a wait state therefore involves looking ahead
in the state list. The geometry that can be chosen is confined by
the physics constraints mentioned above, and is also influenced
by the desired frequency of components as specified by the de-
signer (Table I).

Fig. 10. Geometry generation grammar. Player states derived from the gener-
ated rhythms are the nonterminals in this grammar.

Fig. 11. Geometry interpretations of a rhythm. This figure shows four different
geometric interpretations of the provided rhythm. Small red boxes denote en-
emies to kill, large red boxes are stompers that follow the associated line, and
platforms on green lines are moving platforms that follow that path. The large,
dark green platform at the end of the rhythm group is the joiner from this rhythm
group to the next.

Fig. 11 shows an example of a rhythm and four different
geometries that can be generated from it. Fig. 11(a) and (d)
shows how moving platforms consume a wait–move–wait;
other interpretations of two wait–moves in a row are shown in
Fig. 11(b) and (c). The dotted vertical lines show how the first
three jumps correspond to geometry; note that waits introduce
variation to the physical length of the rhythm group and jumps

SMITH et al.: LAUNCHPAD: A RHYTHM-BASED LEVEL GENERATOR FOR 2-D PLATFORMERS 9

Fig. 12. Line critic scores. Examples of levels that are different distances from
a specified control line (shown in pink). The top level has a distance measure of
1.75, the middle a distance measure of 5.08, and the bottom a distance measure
of 23.06.

that occur after waits no longer “line up” with the sample
rhythm. This figure also shows many different geometric
interpretations for each jump action.

D. Critics

Complete levels are generated by piecing together rhythm
groups that are connected via a joining platform. This gives the
player an opportunity to rest before beginning the next chal-
lenge, an important aspect of level pacing [41]. Rhythm groups
can optionally be repeated before this rest area, according to a
probability that is set by the human designer. This can provide
additional challenge [6] and more visual consistency. Each level
is the length of the control line specified by the user, as described
in the following.
Design grammars such as Launchpad’s are good at capturing

local constraints such as playability at each action point. How-
ever, design grammars also commonly lead to overgeneration:
even with constraints on rhythms and geometry generation, the
variety of levels created by Launchpad is extremely large. We
use critics to narrow this space of levels according to more
global heuristics: a control line (line distance critic) that the
level should fit to, and the desired frequency of components
(component frequency critic) appearing in the level. This al-
lows a designer to focus Launchpad’s output to a specific kind of
level. A level designer can adjust the importance of each critic
so as to exert some control over the kinds of levels that are pro-
duced.
1) Line Distance Critic: One input a human designer pro-

vides to the level generator is a path that the level should follow,
providing control over where the level should start and end, and
the general direction it should follow in between. The path is
specified as a piecewise set of line segments. This critic serves
to rein in the large space of levels that can be generated and
allow the human designer to assert additional control; existing,
human-designed levels in Super Mario World and Sonic the
Hedgehog tend to follow regular paths, rather than meander
aimlessly through space. The level that best fits this path mini-
mizes the average distance between all platform endpoints and
the path, as shown in Fig. 12.
2) Component Frequency Critic: The component parame-

ters described in Table I are used in geometry generation as a
weight for how often each component should be chosen; how-
ever, these weights only guarantee that over a large number of
rhythm groups the frequency of each component will asymptot-
ically approach the specified probability. Each rhythm group is
created by pulling a relatively small number of geometric com-
ponents from a pool of potential components, and then levels

are created by again choosing a small number of rhythm groups
from a large number of randomly generated rhythm groups.
Therefore, there is no guarantee that the observed frequency of
components will match the expected frequency, just as in a se-
ries of ten coin flips there is no guarantee that five will come
up heads and five will come up tails even though one would
expect 50% odds on each. The component frequency critic is
designed to ensure that the number of each type of component
in the level best matches the probability distribution formed by
the style parameters. This critic works by applying a chi-square
goodness-of-fit test [42] to each potential level, and choosing
the level with the smallest test statistic. This represents the level
that has the closest component distribution to the desired style.
3) Combining Critics: There are many cases in which these

two critics will contradict each other as to which level is best.
For example, a level that is heavily weighted towards having
springs will not fit a line that slopes only downward. To resolve
this contradiction, the level with the lowest weighted sum of the
two critics is selected, where the weight on each critic describes
its importance.

E. Global Passes
Although most of the level can be created with local gen-

eration techniques, it is important to be able to reason over
these levels. Launchpad has two “global pass” algorithms: tying
platforms to a common ground plane, and decorating levels
with coins. These algorithms reason over both the player states
and the geometry associated with them. Assigning platforms
a common ground point, determined by the platform with the
lowest value, provides some visual consistency for levels and
removes the possibility of the player unintentionally falling off
platforms that are spaced far apart from each other.
Collectible items are treated as decoration over a level, in a

manner stylistically consistent with Super Mario World. Two
rules determine collectible item placement:
1) place a group of coins along a long platform of predeter-
mined length that has no other action other than move as-
sociated with it;

2) reward the risk for jumping over a gap, and provide guid-
ance for the ideal height of a jump, by placing a single coin
at the peak of jumps that go over gaps.

The probabilities for these coins being placed, and the number
of coins that should be placed, are specified by input parameters.
It would also be easy to specify new, powerful rules for coin

placement, such as along the path of a spring or fall to guide the
player in the right direction, due to Launchpad’s ability to reason
over rhythm and geometry independently. However, level gen-
eration for games that treat collectible items as a primary goal,
such as Donkey Kong Country, would perhaps be better accom-
plished by placing coins during geometry generation, rather than
as decoration after the fact.

V. EVALUATION
Examples of the kinds of levels that Launchpad can create

are shown in Fig. 13. However, these examples do not ade-
quately show the range of levels that Launchpad can create,
nor the full impact of changing generation parameters on this
space. We call this quality of a generator its “expressive range,”

10 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 1, MARCH 2011

Fig. 13. Generated levels. A selection of levels generated by Launchpad using different generation parameters. Each level shown is the best fit to these parameters
out of a sample size of 1000 candidate levels.

and have created a tool to visualize this range. This section
describes Launchpad’s expressive range by addressing the fol-
lowing questions.
1) How does the design of the generation algorithm itself af-
fect the kinds of levels that can be produced?

2) What are appropriate ways to measure produced levels?
3) How does altering input parameters affect the qualities of
generated levels?

4) How can we compare levels produced by the system?

A. Algorithm Implications

Certain kinds of platformer levels are excluded from
Launchpad’s expressive range due to our algorithm for level
generation. In particular, we create levels that are dexterity
based rather than exploration based. The challenge derived
from these levels is more about perfectly timing movement
through a series of obstacles, rather than seeking out hidden
areas. Furthermore, Launchpad does not support the player
choosing a path to take through the level, which is common in
games like Sonic the Hedgehog, and do not support the player
turning around. Because of this, Launchpad’s levels tend to
favor a “speed run” play style. This style influences our choice
of comparison metrics for levels, discussed in the following.

B. Level Metrics

In order to describe the expressive range of a level generator,
we must first be able to compare the levels that it produces. It
is important that the metrics used for comparing levels mea-
sure emergent properties of levels, rather than simply reusing
the same parameters used to guide the generator. In this way, we
can see how input parameters affect the resulting levels. Based
on the style of platformer that Launchpad creates levels for, we
define two different metrics for generated levels: linearity and
leniency. These metrics describe global qualities of levels, fo-
cusing on aesthetics (linearity) and gameplay (leniency).1

1Please note that these metrics differ from those published in our previous
work. It is now the case that the higher the score, the better the level fits the
associated metric. Also, the leniency metric has been normalized to .

Fig. 14. Linearity scores. These three levels show decreasing linearity scores.
The upper level has a score of 0.93, the middle a score of 0.60, and the bottom
a score of 0.00.

Fig. 15. Linearity versus line distance. This level has a high linearity metric
score, as it follows an upwardly sloping line. However, it has a low score for
the line critic as it diverges significantly from the user-specified control line.

1) Linearity: Linearity measures the “profile” of produced
levels; this is a more aesthetic quality that the player will ex-
perience while rushing through the level. We measure linearity
by fitting a single line to the level and determining how well
the geometry fits that line. The goal here is not to determine
exactly what the line is, but rather to understand Launchpad’s
ability to produce levels that range between highly linear and
highly nonlinear. Examples of levels that fall at the extremes of
this scale are shown in Fig. 14. The linearity of a level is mea-
sured by performing linear regression, taking the center points
of each platform as a data point. We then score each level by
taking the sum of the absolute values of the distance from each
platform midpoint to its expected value on the line, and divide
by the total number of points. Results are normalized to ,
where is highly linear and is highly nonlinear (i.e., higher
scores are a better fit). In our experiments, levels rarely had a
linearity score lower than 0.3.
It is important to note that linearity and the line distance critic

are two different things, and that it is possible for a level to be
judged “highly linear” but have a poor line critic distance score
(Fig. 15). The line distance critic is a measure for how well a
level fits a control line specified by a designer before genera-
tion occurs, whereas linearity measures the overall linearity of

SMITH et al.: LAUNCHPAD: A RHYTHM-BASED LEVEL GENERATOR FOR 2-D PLATFORMERS 11

Fig. 16. Leniency scores. These three levels show decreasing leniency scores.
The upper level has a score of 1, the middle a score of 0.5, and the bottom a
score of 0.01.

a level that is output from the generator. Linearity is an aesthetic
measure; line distance is a design control and heuristic.
2) Leniency: Leniency describes how forgiving the level is

likely to be to a player. We hesitate to quantify the difficulty of
generated levels, as this is a subjective measure and dependent
on the specific ordering and combinations of components. How-
ever, it seems reasonable to describe levels that provide fewer
ways for the player to come to harm as being more lenient than
other levels. To measure this, we assign scores to each type of
geometry that can be associated with a beat

gaps enemies falls
springs, stompers
moving platforms
jumps with no gap associated.

These scores are based on an evaluation of how lenient compo-
nents are towards a player, with higher scores indicating more
lenience. The overall leniency score is the sum of each score di-
vided by the total number of components, then normalized. Ex-
ample levels with different lenience scores are shown in Fig. 16.

C. Rhythm Group Distance Metric
In addition to objectively ranking entire levels using the lin-

earity and leniency metrics, we also define a method for di-
rectly comparing two rhythm groups according to geometric
similarity. We use these distance metrics in clustering rhythm
groups, as described in Section V-D, so we can classify similar-
ities and differences in the building blocks for our levels.
When comparing rhythm groups, the level of similarity or dif-

ference between them is computed by counting the edit opera-
tions that would be required to convert one rhythm group into
another. This allows us to create a distance metric that is largely
independent of the length of the rhythm groups, and can iden-
tify similarity between groups on a continuous scale. The dis-
tance metric used to compare rhythm groups is the Levenshtein
edit distance [43] applied to vectors that code the type of ge-
ometry placed for each beat. This distance is normalized [44] to
reduce the impact of the length of each rhythm on the distance
between them. Table II provides a listing of the different encod-
ings for different rhythm group geometry. Our distance metric
uses an insertion and deletion cost of 2 and customized substi-
tution costs. A substitution begins with a base cost of 0, and is
modified in the following ways:

for adding or removing a gap;
for a moving platform;
per step of changed vertical movement;
for the appearance of an enemy or stomper;

Fig. 17. Rhythm group distances. Distances between rhythm groups are nor-
malized to . The distances between these three rhythm groups are as fol-
lows: ; ; .

Fig. 18. Launchpad’s expressive range. All geometry types are weighted
equally. Linearity is measured on the -axis, from 0.3 to 1.0. Leniency is
measured on the -axis, from 0 to 1.0. The color of each hexagon corresponds
to the number of levels that have the associated linearity and leniency scores.
The lighter the color, the more levels there are in that bin.

for converting an enemy to stomper or vice versa.
Thesemodifications are based on a similarmotivation for the lin-
earity and leniency metrics: we would like to see rhythm groups
differboth in termsofvisual aesthetics andgameplaydifferences.
But by examining these differences at the level of individual ge-
ometry components, rather than as a global measure of a level,
we can extract emergent patterns (e.g., staircases) in the rhythm
groups that are produced. Example rhythm groups and the dis-
tancesbetween themareshowninFig.17.Notice that thedistance
between rhythm groups and is fairly low, even though they
have different lengths and some different geometry. The groups
are more similar in terms of a pattern than they are different.

D. Expressive Range
These metrics allow us to compare produced levels and de-

scribe Launchpad’s expressive range in two different ways: by
categorizing entire levels into bins based on their linearity and
leniency scores, and by clustering rhythm groups to see emer-
gent patterns. Both approaches uncover the variety of levels that
can be created with Launchpad, and the influence of parameters
on these levels, but at different granularities.

12 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 1, MARCH 2011

Fig. 19. Varying rhythm type. (A) All rhythms. (B) Only regular-type rhythms. (C) Only swing-type rhythms. (D) Only random-type rhythms.

Fig. 20. Varying rhythm density. (A) All rhythms. (B) Only low-density rhythms. (C) Only medium-density rhythms. (D) Only high-density rhythms.

TABLE II
ABBREVIATIONS FOR LEVEL GEOMETRY

1) Level Analysis: We can describe the expressive range of
Launchpad by generating a large number of levels and ranking
them by their linearity and leniency scores. Fig. 18 shows the ex-
pressive range of the generator when all components are equally
weighted and all rhythms are being used. Each hexagon is col-
ored to indicate the number of generated levels that have the
corresponding linearity and leniency scores. All graphs used in
this paper are based on 10 000 generated levels, unless stated
otherwise.
Here, the generative space is clearly biased towards more

linear levels, and slightly biased towards less lenient levels (i.e.,
the lower right corner of the graph). The leniency bias is likely
due to there being a greater number of nonlenient components
available for selection. The linearity bias is a more interesting
result, as we believe it is due to what was originally intended to
be a small implementation detail in the level generator. When a
component is chosen for inclusion in a rhythm group, the prob-
ability of that component appearing again is slightly increased.
This detail was added late in the development of Launchpad,
to fix a problem we perceived in our early levels: they did not
have any discernable patterns, as we tend to see in games like

Super Mario World where there tends to be locally repeated ge-
ometry. However, this approach means components that incur a
height difference (e.g., jumping up to a new platform) are likely
to stack up to create linear segments of the level. The linearity
bias is an unintended side effect of this design decision. This
issue highlights an important reason to perform a detailed anal-
ysis on a generator’s expressive range: in addition to being able
to easily display the variety of content, we can learn more about
how rules interact inside the generator.
As noted in Table I, there are a number of different parameters

that can be varied to change the kinds of levels that Launchpad
produces. A crucial aspect of analyzing expressive range is to
understand how varying these parameters affects the levels that
are generated. For now, let us look at all levels that are created,
rather than those that pass critic tests.
Fig. 19 shows the results of varying the rhythm type. The

regular rhythm type offers the most variation of all the rhythm
types, with no sharp peak in the graph. This distribution is what
was initially expected for all rhythms; however, swing and
random rhythms are more constraining, contributing heavily to
the bias towards linear and nonlenient levels. One hypothesis is
that these constraints are due to the potentially shorter amounts
of time given to jumps in swing and random rhythms. This
leads to the physics system filtering out potential geometry for
beats due to the requirement for the avatar to land before the
next jump occurs. For swing rhythms, this means that there will
be fewer falls, springs, and moving platforms, contributing to a
higher leniency score.
Fig. 20 shows the results of varying rhythm density. Varying

this parameter does not have a noticeable impact on leniency,
but higher densities do lead to more linear levels. This is for
the same reason that the generator is biased towards creating
linear levels; higher density rhythms have more actions in them,
and each action has a higher probability of the same compo-
nent being chosen as before. Fig. 21 shows similar results when
varying rhythm length.

SMITH et al.: LAUNCHPAD: A RHYTHM-BASED LEVEL GENERATOR FOR 2-D PLATFORMERS 13

Fig. 21. Varying rhythm length. (A) All rhythms. (B) Only length 5 rhythms. (C) Only length 10 rhythms. (D) Only length 15 rhythms. (E) Only length 20 rhythms.

Fig. 22. Zero distance rhythm groups. Two rhythm groups whose edit distance
is zero. Note that these groups are not identical, but do share the same pattern
of jumping up over a gap, and then jumping down over a gap.

2) Rhythm Group Analysis: In addition to describing global
qualities of levels, we can also cluster generated rhythm groups
based on their similarity to each other. Visualizing these clus-
ters provides a better sense of the variety of produced levels
and shows patterns in produced geometry. We can also visu-
alize how changing generation parameters influences the space
of produced rhythm groups.
Rhythm groups are clustered using an agglomerative hierar-

chical clustering method [45]. The first grouping combines all
rhythm groups that are interpreted as identical to each other.
Note that these groups are not necessarily completely identical
in terms of geometry placement; rather, they are identical ac-
cording to their edit distance. An example of two rhythm groups
that have zero distance between them is shown in Fig. 22. These
bins of similar rhythm groups form the leaf nodes of our hier-
archy, and are the initial clusters for the clustering algorithm.
On each iteration of the algorithm, two clusters are selected to
be grouped together. The heuristic used for this is the clusters
whose most dissimilar members have the closest distance. Itera-
tion continues until all initial clusters have been included in the
hierarchy.
This cluster hierarchy can be visualized with a dendrogram;

however, a static tree is difficult to navigate, and does not clearly
show the size of each cluster or the contents of it. A better ap-
proach is to let a level designer navigate this tree using a treemap
representation [46], where each box has a size corresponding
to the number of rhythm groups contained in the cluster. Each
cluster has a color assigned to it, with its children having a color
of the same hue but different brightness. Initial coloring is deter-
mined by a distance parameter set by the designer: this distance
parameter describes how far apart each cluster should be from
one another.
Clustering is performed on 4000 rhythm groups: 1000 for

each length of rhythm (Section IV-A). A side bar in the visual-
ization tool shows the rhythm properties of each rhythm group
in a selected cluster, allowing the user to see how rhythm pa-
rameters influence generated geometry. A region underneath the
treemap shows thumbnails of all the rhythm groups contained

Fig. 23. Visualizing rhythm group clusters. The rhythm group cluster treemap
at various depths. The user can navigate the tree, expanding and collapsing
nodes. At each stage, the area below the treemap shows the rhythm groups con-
tained in the selected cluster.

in the cluster, allowing easy visualization of variety within a
cluster. Fig. 23 shows a screenshot of the cluster visualization
tool.
Exploring each cluster gives a sense of the large range and

variety of content that Launchpad can create. Like the expres-
sive range graphs, this visualization has also helped to uncover
some biases in Launchpad’s generation algorithm. The largest
size clusters correspond to rhythm groups that contain a lot of
stompers. There are also a large number of rhythm groups that
contain geometry that forms an upward staircase pattern. The
discovery of an upward staircase pattern offers additional evi-
dence for the theory mentioned earlier that shorter jump times
lead to the physics system filtering out jumps that might cause
the player to move to a lower position. The prevalence of
stompers is likely due to how Launchpad handles the player
waiting. Recall that stompers and moving platforms can be cre-
ated for wait–move and wait–move–wait beat patterns, respec-
tively. However, the wait–move–wait pattern also contains a
wait–move, meaning the stomper can be chosen in that situa-
tion as well. This biases the generator towards creating a larger
number of stompers than expected.

VI. DISCUSSION
This paper has described Launchpad, a level generator for

2-D platformers built on a rhythm-based model of player be-
havior, derived from an analysis of existing platformer games. It

14 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 1, MARCH 2011

also presents a visualization tool for understanding Launchpad’s
expressive range. Both the Launchpad demo and the visualiza-
tion tool are available online.2 The demo includes 15 sets of
pregenerated levels, where each set has different desired com-
ponent frequencies, control lines, and player movement speed.
It also has a standalone “generate” feature, which will create a
single level with a random player speed.
While rhythmandpacingare important aspects of platformers,

they are not the sole determining factors of an enjoyable level.
With this in mind, we initially considered a difficulty-based ap-
proach for level generation, rather than our current rhythm-based
approach. This method would have involved assigning diffi-
culty measures to different, large-scale “idioms” for platformer
levels, such as jumping onto a platform with a moving enemy,
or jumping across a series of variable-width gaps. These idioms
would then be fit together in much the same manner as existing
level generation techniques, but with heuristics for controlling
the difficulty of each chunk. However, we were concerned that
this approach would not provide sufficiently varied levels, nor
be as extensible. The rhythm-based approach provides more
flexibility by working with the most basic components of levels,
rather than their myriad combinations, and recognizes the struc-
tural importance of rhythm in platformers. We feel that it is both
simpler and more beneficial to build levels using a well-defined
structure and later analyze them for difficulty, than vice versa.
Polymorph [31] is a project that uses this approach to level
generation, assigning difficulty to individual rhythm groups
based on statistics gathered from players.
Another critical design decision in creating Launchpad was

using a generate-and-test process over candidate levels rather
than carefully piecing together rhythm groups using a more so-
phisticated search process. The rationale for this decision is to
make it easy for a designer to use Launchpad to rapidly view
many different possibilities for a level that meet designer-spec-
ified criteria, and because these criteria are global in nature. It
is convenient to have a large pool of candidate levels ranked
by their fits to these design heuristics and allow the designer to
browse that pool. However, if the design criteria became more
sophisticated, for example by allowing a designer to specify
the kinds of geometry in particular regions of a level, then a
search-based stitching together of rhythm groups may become
more appropriate, as the number of candidate levels required to
provide a good match to increasingly complicated design cri-
teria would be prohibitive.
There are a number of different directions that future work on

Launchpad could take. Perhaps the simplest extension would be
the addition of new components to the system by creating new
verbs (e.g., “shoot”) and geometry associated with those verbs.
However, it is important to note that this extension may also
require modifications to the rhythm generator, to ensure that
these new verbs and geometry could be chosen. Our expressive
range evaluation has shown that Launchpad currently favors
placing patterns of components that take smaller amounts of
time for the player to cross, due to rhythm constraints. There-
fore, new components that require longer amounts of time to
cross (e.g., a loop-de-loop from Sonic the Hedgehog) may be
2 Launchpad: http://users.soe.ucsc.edu/~gsmith/launchpad/platformer/.

Visualization tool: http://users.soe.ucsc.edu/~gsmith/launchpad/viztool/

chosen less frequently than desired without also performing
tuning on the rhythm generator. Since Launchpad does not
contain any search processes, the addition of new components
would not slow down level generation.
Other components, such as triggers that affect the rules

or physics of the game, may be more challenging to add.
Launchpad can guarantee level playability by creating locally
playable components and connecting them with safe walking
areas. This no longer works when generating levels for a game
like Shift, where the physics properties of the game change at
runtime. A grammar-based approach may not be appropriate
for generating levels with such characteristics.
Finally, we would like to explore how Launchpad’s genera-

tion technique can extend to other genres. Dormans’s work [23]
in creating missions and levels for Zelda-style adventure games
offers encouraging results in grammar-based level generation
for a different genre. However, we believe that more impor-
tant than a specific generation technique is the focus on under-
standing and reasoning about expected player actions in a level.
In Launchpad, this is represented as player actions occurring
at specific beats; in another genre, this may be a quest that the
player is following, or skills that the player should be learning.
This paper has presented Launchpad, a level generator for

2-D platform games that works from a formal understanding
of platformer level design. Launchpad provides designers with
control over the kinds of levels it produces through a set of
parameters that have a clear mapping to the generated levels.
Furthermore, this paper describes a method for analyzing and
visualizing the expressivity of a level generator, and showed
that Launchpad has a wide expressive range within its domain.
Playable examples of levels generated with Launchpad and the
visualization tool are available online.

REFERENCES
[1] E. Byrne, Game Level Design (Game Development Series). Boston,

MA: Charles River Media, 2004, pp. 1–12.
[2] Nintendo EAD, Super Mario World, 1990.
[3] Sonic Team, SEGA, Sonic the Hedgehog, 1991.
[4] G. Smith, M. Cha, and J. Whitehead, “A framework for analysis of

2D platformer levels,” in Proc. ACM SIGGRAPH Sandbox Symp., Los
Angeles, CA, 2008, pp. 75–80.

[5] K. Compton and M. Mateas, “Procedural level design for platform
games,” in Proc. 2nd Artif. Intell. Interactive Digit. Entertain. Conf.,
Palo Alto, CA, 2006, pp. 109–111.

[6] V. Nicollet, “Difficulty in dexterity-based platform games,”GameDev.
net, Mar. 2004 [Online]. Available: http://www.gamedev.net/refer-
ence/design/features/platformdiff

[7] Side Effects Software, Houdini 11 (PC Software), 2010.
[8] Procedural Inc., CityEngine (PC Software), 2010.
[9] Interactive Data Visualization Inc., SpeedTree (PC Software), 2010.
[10] K. Salen and E. Zimmerman, Rules of Play: Game Design Fundamen-

tals. Cambridge, MA: MIT Press, 2004, pp. 312–327.
[11] P. Co, Level Design for Games: Creating Compelling Game Experi-

ences. Berkeley, CA: New Riders Games, 2006.
[12] E. Adams, Fundamentals of Game Design. Berkeley, CA: New

Riders Press, 2009.
[13] J. H. Feil and M. Scattergood, Beginning Game Level De-

sign. Boston, MA: Thompson Course Technology, 2005.
[14] M. Nelson, “Breaking down breakout: System and level design

for breakout-style games,” Gamasutra, Aug. 2007 [Online]. Avail-
able: http://www.gamasutra.com/view/feature/1630/breaking_down_
breakout_system_and_.php

[15] K. Hullett and J. Whitehead, “Design patterns in FPS levels,” in Proc.
Int. Conf. Found. Digit. Games, Monterey, CA, 2010, pp. 78–85.

[16] D. Milam and M. S. El Nasr, “Analysis of level design ‘Push & Pull’
within 21 games,” in Proc. Int. Conf. Found. Digit. Games, Monterey,
CA, 2010, pp. 139–146.

SMITH et al.: LAUNCHPAD: A RHYTHM-BASED LEVEL GENERATOR FOR 2-D PLATFORMERS 15

[17] D. Boutros, “A detailed cross-examination of yesterday and today’s
best-selling platform games,” Gamasutra, Aug. 2006 [Online]. Avail-
able: http://www.gamasutra.com/view/feature/1851/a_detailed_cros-
sexamination_of_.php

[18] J. Dormans, “The art of jumping,” Nov. 2005 [Online]. Available:
http://www.jorisdormans.nl/article.php?ref=artofjumping

[19] M. Toy, G. Wichman, K. Arnold, and J. Lane, Rogue, 1980.
[20] Blizzard North, Blizzard Entertainment, Diablo, 1997.
[21] Rogue Basin, Articles on Implementation Techniques, [Online]. Avail-

able: http://roguebasin.roguelikedevelopment.org/index.php?title=Ar-
ticles#Implementation

[22] D. Yu, Spelunky, 2009 [Online]. Available: http://www.spelunky-
world.com/

[23] J. Dormans, “Adventures in level design: Generating missions and
spaces for action adventure games,” in Proc. Workshop Procedural
Content Generat. Games, Monterey, CA, 2010.

[24] G. Stiny, “Introduction to shape and shape grammars,” Environment
Planning B, vol. 7, no. 3, pp. 343–351, 1980.

[25] C. Ashmore andM. Nitsche, “The quest in a generated world,” in Proc.
Digit. Games Res. Assoc. Conf., Situated Play, Tokyo, Japan, 2007, pp.
503–509.

[26] P. Mawhorter and M. Mateas, “Procedural level generation using
occupancy-regulated extension,” in Proc. IEEE Conf. Comput. Intell.
Games, Copenhagen, Denmark, 2010, pp. 351–358.

[27] K. Hullett and M. Mateas, “Scenario generation for emergency rescue
training games,” in Proc. Int. Conf. Found. Digital Games, Orlando,
FL, 2009, pp. 99–106.

[28] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards automatic per-
sonalised content creation for racing games,” in Proc. IEEE Symp.
Comput. Intell. Games, Honolulu, HI, 2007, pp. 252–259.

[29] E. J. Hastings, R. K. Guha, and K. O. Stanley, “Automatic content
generation in the galactic arms race video game,” IEEE Trans. Comput.
Intell. AI Games, vol. 1, no. 4, pp. 245–263, Dec. 2009.

[30] N. Shaker, G. N. Yannakakis, and J. Togelius, “Towards automatic
personalized content generation for platform games,” in Proc. 6th
Artif. Intell. Interactive Digit. Entertain. Conf., Palo Alto, CA, 2010,
pp. 63–68.

[31] M. Jennings-Teats, G. Smith, and N. Wardrip-Fruin, “Polymorph:
A model for dynamic level generation,” in Proc. 6th Artif. In-
tell. Interactive Digit. Entertain. Conf., Palo Alto, CA, 2010, pp.
138–143.

[32] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky, “Instant
architecture,” ACM Trans. Graphics, vol. 22, no. 3, pp. 669–677,
2003.

[33] A. Smith, M. Romero, Z. Pousman, and M. Mateas, “Tableau machine:
A creative alien presence,” in Proc. AAAI Spring Symp. Creative Intell.
Syst., Palo Alto, CA, 2008, pp. 82–89.

[34] Sonic Team, SEGA, Sonic the Hedgehog 2, 1992.
[35] Artoon, Nintendo, Yoshi’s Island DS, 2006.
[36] Rareware, Nintendo, Donkey Kong Country 2: Diddy’s Kong Quest,

1995.
[37] Nintendo EAD, New Super Mario Bros., 2006.
[38] H. Desurvire, M. Caplan, and J. A. Toth, “Using heuristics to

evaluate the playability of games,” in Proc. CHI’04 Extended Ab-
stracts on Human Factors Comput. Syst., Vienna, Austria, 2004, pp.
1509–1512.

[39] Armor Games, Shift, 2008 [Online]. Available: http://armorgames.
com/play/751/shift

[40] C. Bleszinski, “The art and science of level design,” 2000 [Online].
Available: http://www.cliffyb.com/art-sci-ld.html

[41] R. Kremers, Level Design: Concept, Theory, and Practice. Boca
Raton, FL: Peters/CRC Press, 2009, pp. 263–267.

[42] G. W. Snedecor and W. G. Cochran, Statistical Methods. Ames, IA:
Iowa State Univ. Press, 1989, pp. 76–79.

[43] V. I. Levenshtein, “Binary codes capable of correcting deletions, in-
sertions, and reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp.
707–710, 1966.

[44] L. Yujian and L. Bo, “A normalized Levenshtein distance metric,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 1091–1095,
Jun. 2007.

[45] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Informa-
tion Retrieval. Cambridge, U.K.: Cambridge Univ. Press, 2008, pp.
346–368.

[46] B. Fry, Visualizing Data: Exploring and Explaining Data With the
Processing Environment. Sebastopol, CA: O’Reilly Media, 2008, pp.
182–219.

Gillian Smith (S’10) received the B.S. degree in
computer science from the University of Virginia,
Charlottesville, in 2006 and the M.S. degree in com-
puter science from the University of California Santa
Cruz, Santa Cruz, in 2009, where she is currently
working towards the Ph.D. degree in computer
science.
She teaches game design and programming in

the University of California Santa Cruz COSMOS
summer program for high school students. Her
research interests include procedural content gener-

ation and mixed-initiative design tools.
Ms. Smith is a student member of the Association for Computing Machinery

(ACM), the Association for the Advancement of Artificial Intelligence (AAAI),
and the International Game Developers Association (IGDA).

Jim Whitehead (S’94–M’06–SM’08) received the
Ph.D. degree in information and computer science
from the University of California Irvine, Irvine, in
2000.
He is an Associate Professor at the Computer

Science Department, University of California Santa
Cruz, Santa Cruz. He was an active participant in the
creation of the Computer Science: Computer Game
Design major at the University of California Santa
Cruz in 2006. His research interests include software
evolution, software bug prediction, procedural

content generation, and augmented design.
Prof. Whitehead is a member of the Association for Computing Machinery

(ACM) and the International Game Developers Association (IGDA). He is the
founder and chair of the Society for the Advancement of the Science of Digital
Games (SASDG).

Michael Mateas received the Ph.D. degree in com-
puter science fromCarnegieMellon University, Pitts-
burgh, PA, in 2002.
He is an Associate Professor at the Computer

Science Department, University of California Santa
Cruz, Santa Cruz, where he holds the MacArthur
Endowed Chair. His research is in AI-based art and
entertainment combines science, engineering, and
design to push the frontiers of interactive entertain-
ment. He founded and co-directs the Expressive
Intelligence Studio at the University of California

Santa Cruz, which has ongoing projects in autonomous characters, interactive
storytelling, game design support systems, procedural content generation,
automated game design, and learning AI from data-mining gameplay traces.
With A. Stern, he released Façade, the world’s first AI-based interactive
drama. Façade has received significant attention, including top honors at the
Slamdance independent game festival.

Mike Treanor received the B.S. degree in computer
science and the MFA degree in digital arts and new
media from the University of California Santa Cruz,
Santa Cruz, in 2006 and 2008, respectively, where
he is currently working towards the Ph.D. degree in
computer science.
His research interests include experimental art

games, social games, news/rhetoric games, and
procedural content generation.

16 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 1, MARCH 2011

Jameka March is currently working towards the
B.S. degree in computer science: computer game
design at the University of California Santa Cruz,
Santa Cruz, which she expects to receive in 2012.

Mee Cha received the B.S. degree in computer sci-
ence: computer game design from the University of
California Santa Cruz, Santa Cruz, in 2010.
She is currently with OnLive, Palo Alto, CA.

